The Preparticipation Athletic Evaluation



FREE PREVIEW Log in or buy this issue to read the full article. AAFP members and paid subscribers get free access to all articles. Subscribe now.


FREE PREVIEW Subscribe or buy this issue. AAFP members and paid subscribers get free access to all articles.

A comprehensive medical history that includes questions about a personal and family history of cardiovascular disease is the most important initial component of the preparticipation athletic evaluation. Additional questions should focus on any history of neurologic or musculoskeletal problems. A limited physical examination should emphasize cardiac auscultation with provocative maneuvers to screen for hypertrophic cardiomyopathy. This condition is the most common cause of sudden death in young male athletes. Other components of the physical examination include an evaluation of the spine and extremities. Screening tests such as electrocardiography, treadmill stress testing and urinalysis are not indicated in the absence of symptoms or a significant history of risk factors. Specific conditions that would exclude or limit athletic participation include hypertrophic cardiomyopathy, long QT interval syndrome, concussion, significant knee injury, sickle cell disease and uncontrolled seizures. Overall, about 1 percent of athletes who are screened are completely disqualified from sports participation.

The overall rate of sudden death in male athletes younger than 35 years is quite low, approximately 0.75 per 100,000 participants per year.1 Congenital cardiac anomalies account for most sudden deaths in these patients. The most common anomalies are hypertrophic cardiomyopathy and coronary artery anomalies.1

The most common coronary abnormality is a left main coronary artery originating off the right sinus. Myocarditis, rupture of the aorta, arrhythmogenic right ventricular dysplasias, idiopathic left ventricular hypertrophy, aortic stenosis and premature coronary artery disease account for most of the remaining fatalities.2

When large groups of young athletes are evaluated, few are disqualified because these disorders are suspected. Rather, the most common abnormalities leading to disqualification are musculoskeletal conditions, followed by other cardiac problems.3 Even when cardiac abnormalities are detected, the leading disqualifiers are rhythm and conduction abnormalities, systemic hypertension and valvular heart disease,4 not the cardiac abnormalities listed in the opening paragraph.

Screening History

CARDIOVASCULAR

The personal and family history of the athlete reveals 64 to 78 percent of conditions that could prohibit or alter sports participation, making it a more sensitive tool than the physical examination.5

The history more reliably detects risk factors and symptoms of coronary artery disease in older athletes than in younger athletes.2 Hypertrophic cardiomyopathy, the most common cause of death among 12- to 32-year-old athletes on the field, may not produce symptoms before sudden death.6 All potential athletes should be asked about previous injuries and levels of physical activity. The latter information is particularly important in a potential athlete more than 35 years of age who has been sedentary and is now contemplating a vigorous exercise program.

A personal history of congenital or acquired heart disease, as well as a history of hypertension or murmurs, should be noted. Symptoms of chest discomfort, shortness of breath, palpitations, syncope or near-syncope with exercise are important. A known family history of hypertrophic cardiomyopathy, Marfan syndrome or atherosclerosis (especially premature), as well as a history of unexplained sudden death in family members younger than 50 years, are all of concern.

Hypertrophic cardiomyopathy is a heterogeneous group of disorders acquired through autosomal dominant transmission with incomplete penetrance, and signs and symptoms may not become manifest until early adulthood.7 Detecting persons with Marfan syndrome before they participate in sports is important because the defective aortic media can rupture during basketball, volleyball and, presumably, other sports activities.8  Table 1 is a representative checklist of historical cardiovascular questions to ask in the preparticipation examination. The patient giving an affirmative answer to any of these questions would merit a more detailed assessment.

TABLE 1

Cardiovascular Screening History for Preparticipation Examinations: Critical Questions

Exertional chest pain or discomfort, or shortness of breath?

Exertional syncope or near-syncope, or unexpected fatigue?

Past detection of cardiac murmur or systemic hypertension?

Known family history of hypertrophic cardiomyopathy, other cardiomyopathies, long QT syndrome, Marfan syndrome, significant dysrhythmias?

Family history of premature death or known disabling cardiovascular disease in a first- or second-order relative younger than 50 years? (More concern if younger than 40 years.)

TABLE 1   Cardiovascular Screening History for Preparticipation Examinations: Critical Questions

View Table

TABLE 1

Cardiovascular Screening History for Preparticipation Examinations: Critical Questions

Exertional chest pain or discomfort, or shortness of breath?

Exertional syncope or near-syncope, or unexpected fatigue?

Past detection of cardiac murmur or systemic hypertension?

Known family history of hypertrophic cardiomyopathy, other cardiomyopathies, long QT syndrome, Marfan syndrome, significant dysrhythmias?

Family history of premature death or known disabling cardiovascular disease in a first- or second-order relative younger than 50 years? (More concern if younger than 40 years.)

NEUROLOGIC

A report of burning pain, weakness, numbness or tingling in all four or only the upper extremities raises concerns of cervical spine impingement. Possible etiologies for this condition would include atlantoaxial instability, congenital fusions and disk herniations.

Medications and Substance Abuse

A medication history provides clues to current medical conditions, as well as a bridge into inquiries about nutritional supplements. Asking about the use of cocaine or anabolic steroids is particularly appropriate during a preparticipation physical examination because of the known cardiotoxic effects of these drugs.9 Eliciting information about patterns and amounts of alcohol use and the potential to be in an automobile with drunken drivers is appropriate in view of the overall mortality associated with these issues in the young adult population. Although alcohol use and the likelihood of riding with drunken drivers have nothing to do with the ability to participate in sports, this is a good opportunity to address these issues with young athletes.

Female Athletes

The American Heart Association does not recommend any gender-specific cardiovascular alterations in the screening of female athletes.2 Young women are even less likely to experience sudden death on the athletic field than young men; women account for only about 15 percent of such deaths.2 In female athletes, however, several predispositions should be considered.

Anorexia nervosa and other eating disorders are more common among female athletes than among male athletes. Screening questions about desires to change weight or displeasure with body habitus identify many of these women. Female runners are 12 times more likely to develop stress fractures than are male runners.10 Osteoporosis occurs in amenorrheic female athletes and its finding should prompt further consideration of the possibility of an eating disorder. Women who play soccer and basketball are also more susceptible to patellofemoral syndrome, foot disorders (i.e., hammertoes, bunions, plantar fasciitis), stress fractures to the forefoot, and anterior cruciate ligament injuries.11,12

Preparticipation Physical Examinations

The purpose of these examinations is to detect conditions that put the proposed athlete at risk for sudden death, but they have not been shown to be highly effective in this regard.13 A recent Italian study4 showed potential benefits in preventing sudden deaths when persons with certain conditions were disqualified (e.g., physical features of Marfan syndrome; delayed femoral arterial pulses; single, wide or fixed splits in the second heart sound; systolic or diastolic murmurs of grade 2/6 or greater; irregular rhythms; or blood pressures greater than 145/90 mm Hg). This study raises the issue of whether efforts to provide national screening and standards would be effective in the United States.

Table 2 presents the components of an appropriate physical examination. Individual alterations are appropriate, especially if the physician has had recent contacts with or recently examined the athlete, or has knowledge of the athlete's previous injuries and family history. Several items on the examination merit additional attention. Blood pressure must be interpreted on the basis of the patient's age, gender and height. For example, taller children may have higher readings and still be normotensive. Table 3 offers representative values, and the National High Blood Pressure Education Program's update on high blood pressure in children and adolescents offers more detailed coverage of this topic.14

TABLE 2

Example of an Appropriate Preparticipation Physical Examination

Examination feature Comments

Blood pressure

Must be assessed in the context of participant's age, height and sex (see Table 3).

General appearance

Measure for excessive height and observe for evidence of excessive long-bone growth (arachnodactyly, arm span > height, pectus excavatum) that suggest Marfan syndrome.

Eyes

Important to detect vision defects that leave one of the eyes with > 20/40 corrected vision. Lens subluxations, severe myopia, retinal detachments and strabismus are associated with Marfan syndrome.

Cardiovascular

Palpate the point of maximal impulse for increased intensity and displacement that suggest hypertrophy and failure, respectively.

Perform auscultation with the patient supine and again with the patient standing or straining during Valsalva's maneuver.

Femoral pulse diminishment suggests aortic coarctation.

Respiratory

Observe for accessory muscle use or prolonged expiration and auscultate for wheezing. Exercise-induced asthma will not produce manifestations on a resting examination and requires exercise testing for diagnosis.

Abdominal

Assess for hepatic or splenic enlargement.

Genitourinary

Hernias and varicoceles do not usually preclude sports participation, but the sports examination can also serve as an appropriate time to screen for testicular masses if the athlete is not receiving regular general examinations.

Musculoskeletal

The two-minute orthopedic examination (see Appendix, p. 2696) is a commonly used systematic screen. Consider supplemental shoulder, knee and ankle examinations.

Skin

Evidence of molluscum contagiosum, herpes simplex infection, impetigo, tinea corporis or scabies would temporarily prohibit participation in sports where direct skin-to-skin competitor contact occurs (e.g., wrestling, martial arts).

TABLE 2   Example of an Appropriate Preparticipation Physical Examination

View Table

TABLE 2

Example of an Appropriate Preparticipation Physical Examination

Examination feature Comments

Blood pressure

Must be assessed in the context of participant's age, height and sex (see Table 3).

General appearance

Measure for excessive height and observe for evidence of excessive long-bone growth (arachnodactyly, arm span > height, pectus excavatum) that suggest Marfan syndrome.

Eyes

Important to detect vision defects that leave one of the eyes with > 20/40 corrected vision. Lens subluxations, severe myopia, retinal detachments and strabismus are associated with Marfan syndrome.

Cardiovascular

Palpate the point of maximal impulse for increased intensity and displacement that suggest hypertrophy and failure, respectively.

Perform auscultation with the patient supine and again with the patient standing or straining during Valsalva's maneuver.

Femoral pulse diminishment suggests aortic coarctation.

Respiratory

Observe for accessory muscle use or prolonged expiration and auscultate for wheezing. Exercise-induced asthma will not produce manifestations on a resting examination and requires exercise testing for diagnosis.

Abdominal

Assess for hepatic or splenic enlargement.

Genitourinary

Hernias and varicoceles do not usually preclude sports participation, but the sports examination can also serve as an appropriate time to screen for testicular masses if the athlete is not receiving regular general examinations.

Musculoskeletal

The two-minute orthopedic examination (see Appendix, p. 2696) is a commonly used systematic screen. Consider supplemental shoulder, knee and ankle examinations.

Skin

Evidence of molluscum contagiosum, herpes simplex infection, impetigo, tinea corporis or scabies would temporarily prohibit participation in sports where direct skin-to-skin competitor contact occurs (e.g., wrestling, martial arts).

TABLE 3

Criteria for Hypertension in Children and Adolescents

Age (years) Blood pressure (mm Hg)
Girls Girls Boys Boys
50th percentile for height 75th percentile for height 50th percentile for height 75th percentile for height

6

111/73

112/73

114/74

115/75

12

123/80

124/81

123/81

125/82

17

129/84

130/85

136/87

138/88


Reprinted from Update on the task force report on high blood pressure in children and adolescents. Bethesda, Md.: National Institutes of Health, 1997. Publication no. 97-3790.

TABLE 3   Criteria for Hypertension in Children and Adolescents

View Table

TABLE 3

Criteria for Hypertension in Children and Adolescents

Age (years) Blood pressure (mm Hg)
Girls Girls Boys Boys
50th percentile for height 75th percentile for height 50th percentile for height 75th percentile for height

6

111/73

112/73

114/74

115/75

12

123/80

124/81

123/81

125/82

17

129/84

130/85

136/87

138/88


Reprinted from Update on the task force report on high blood pressure in children and adolescents. Bethesda, Md.: National Institutes of Health, 1997. Publication no. 97-3790.

Dynamic auscultation of the heart is critical in the detection of hypertrophic cardiomyopathy. In patients with this disorder, a soft systolic murmur along the left sternal border may be appreciated only when the patient stands up or during the straining phase of the Valsalva's maneuver, as these maneuvers decrease preload and the end diastolic volume of the left ventricle. Table 4 summarizes potential physical findings in patients with hypertrophic cardiomyopathy.

TABLE 4

Hypertrophic Cardiomyopathy: Potential Abnormalities on Physical Examination

Finding Significance

Systolic murmur

Turbulent flow of blood through a dynamic outflow tract obstruction. The murmur increases with activities that decrease the end diastolic volume of the left ventricle.

Second right intercostal space and/or left sternal border

Murmur increases with standing and decreases with squatting

May radiate to neck

Lateral displacement of apical impulse

Hypertrophy and failure of left ventricle

Holosystolic murmur of mitral regurgitation at apex with radiation to axilla

Malposition of mitral valve during systole, which interferes with valve closure

TABLE 4   Hypertrophic Cardiomyopathy: Potential Abnormalities on Physical Examination

View Table

TABLE 4

Hypertrophic Cardiomyopathy: Potential Abnormalities on Physical Examination

Finding Significance

Systolic murmur

Turbulent flow of blood through a dynamic outflow tract obstruction. The murmur increases with activities that decrease the end diastolic volume of the left ventricle.

Second right intercostal space and/or left sternal border

Murmur increases with standing and decreases with squatting

May radiate to neck

Lateral displacement of apical impulse

Hypertrophy and failure of left ventricle

Holosystolic murmur of mitral regurgitation at apex with radiation to axilla

Malposition of mitral valve during systole, which interferes with valve closure

Ancillary Studies

ELECTROCARDIOGRAPHY

Routine screening use of 12-lead electrocardiography (ECG) for preparticipation physical examinations of high school and collegiate athletes is not recommended by the American Heart Association or other organizations.

In a normal, well-conditioned young athlete, the heart may develop ECG changes that falsely suggest ventricular hypertrophy; the specificity of the test is poor in this population.2 Nevertheless, selective use of ECG can be useful in assessing young athletes who, on the grounds of history, family history or physical examination, are thought to be at potentially higher risk.

The resting ECG rate is abnormal in 80 to 90 percent of patients with hypertrophic cardiomyopathy, coronary anomalies and right ventricular dysplasias, as well as long QT interval syndrome. Figure 1 demonstrates a typical ECG from a patient with hypertrophic cardiomyopathy. The most common ECG abnormalities in patients with this condition are voltage criteria for left ventricular hypertrophy, abnormal ST-segments, T-wave inversion and deep Q waves.

FIGURE 1.

Electrocardiogram from a 33-year-old man with hypertrophic cardiomyopathy. These are voltage criteria for left ventricular hypertrophy. Note the ST-segment elevation (short arrow) in the lateral leads and biphasic T-waves (long arrow) in V1 to V3.

View Large


FIGURE 1.

Electrocardiogram from a 33-year-old man with hypertrophic cardiomyopathy. These are voltage criteria for left ventricular hypertrophy. Note the ST-segment elevation (short arrow) in the lateral leads and biphasic T-waves (long arrow) in V1 to V3.


FIGURE 1.

Electrocardiogram from a 33-year-old man with hypertrophic cardiomyopathy. These are voltage criteria for left ventricular hypertrophy. Note the ST-segment elevation (short arrow) in the lateral leads and biphasic T-waves (long arrow) in V1 to V3.

ECHOCARDIOGRAPHY

Two-dimensional echocardiogrphy remains the diagnostic study of choice for detection of hypertrophic cardiomyopathy when the history and physical examination raise a suspicion of this disorder. Because hypertrophic cardiomyopathy represents a heterogeneous group of disorders, DNA testing is not a practical substitute. Echocardiograms can also confirm valvular pathology and demonstrate left ventricular dysfunction, aortic root dilatation and sometimes even aberrant origins of the left main coronary artery. They are not cost effective in large-scale general screening programs. Problems with false-positive results (e.g., enlargement in left ventricular wall thickness that occurs as a normal physiologic adaptation in the athlete) and false-negative results (e.g., hypertrophic cardiomyopathy may not demonstrate septal thickening until the end of adolescence) can occur.2

EXERCISE STRESS TESTING

Exercise stress testing has also not been shown to be cost effective in large screening programs of young athletes. It is appropriate in the older athlete with known coronary artery disease or when symptoms suggest stable angina or exercise-induced anginal variants. Table 515 presents stress test exercise levels that are associated with less risk of sudden exercise-related cardiac events. Exercise stress testing is also appropriate when risk factors (e.g., hypertension, smoking, diabetes mellitus) are present and the patient is contemplating an increase in exercise intensity. The American College of Sports Medicine16 recommends exercise stress testing in men older than 40 years and women older than 50 years before starting a vigorous exercise program.

TABLE 5

Stress Test Exercise Thresholds Associated with Lower Risk of Sudden Cardiovascular Events*

Age (years) Threshold

< 50

> 10 METS

50 to 59

> 9 METS

60 to 69

> 8 METS

> 70

> 7 METS


METS = metabolic equivalent of the task.

* —This assumes the patient has no exercise-induced ischemia or ventricular ectopy at these exercise levels and that left ventricular function is normal. Any patient with known coronary artery disease is probably at some increased risk of a cardiac event, especially with strenuous exercise, and the patient should be so informed.

Information from Thompson PD, Klocke FJ, Levine BD, Van Camp SP. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 5: coronary artery disease. Med Sci Sports Exerc 1994;26:S271–5.

TABLE 5   Stress Test Exercise Thresholds Associated with Lower Risk of Sudden Cardiovascular Events*

View Table

TABLE 5

Stress Test Exercise Thresholds Associated with Lower Risk of Sudden Cardiovascular Events*

Age (years) Threshold

< 50

> 10 METS

50 to 59

> 9 METS

60 to 69

> 8 METS

> 70

> 7 METS


METS = metabolic equivalent of the task.

* —This assumes the patient has no exercise-induced ischemia or ventricular ectopy at these exercise levels and that left ventricular function is normal. Any patient with known coronary artery disease is probably at some increased risk of a cardiac event, especially with strenuous exercise, and the patient should be so informed.

Information from Thompson PD, Klocke FJ, Levine BD, Van Camp SP. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 5: coronary artery disease. Med Sci Sports Exerc 1994;26:S271–5.

OTHER TESTS

The yield of urinalysis, complete blood counts and determination of serum ferritin levels is poor in asymptomatic, healthy sports participants. The results, even if abnormal, do not usually affect sports participation. These tests are not recommended in this setting.5

Medical Conditions and Sports

If the physician has identified a medical or orthopedic problem, the issue is whether to disqualify the athlete from the sport or allow the athlete to play with restrictions, with or without treatment. Most athletes are healthy; only 3 to 13 percent require further evaluation, and the disqualification rate for 10 million annual examinations is less than 1 percent.17

CARDIOVASCULAR DISEASES

A much more detailed assessment, often with specialist consultation, is required to define the nature and intensity of sports participation when conditions are discovered on screening. Some conditions that would prohibit any sports activity, or certain sports activities (as indicated by parentheses) are shown in Table 6. The potential for adverse outcomes cannot be clearly defined on the basis of whether a condition exists or not, but instead requires a more exact knowledge of the status of that condition. Although recent studies have shown that some patients with hypertrophic cardiomyopathy do not experience sudden premature death, 1 percent of persons diagnosed with the condition die of it each year.18

TABLE 6

Conditions that Contraindicate Sports Participation

Active myocarditis or pericarditis

Hypertrophic cardiomyopathy

Severe hypertension until controlled by therapy (static resistance activities, such as weight lifting, are particularly contraindicated)

Suspected coronary artery disease until fully evaluated (patients with impaired resting left ventricular systolic function < 50%, or exercise-induced ventricular dysrhythmias, or exercise-induced ischemia on exercise stress testing are at greatest risk of sudden death)

Long QT interval syndrome

History of recent concussion and symptoms of postconcussion syndrome (no contact or collision sports)

Poorly controlled convulsive disorder (no archery, riflery, swimming, weight lifting or power lifting, strength training or sports involving heights)

Recurrent episodes of burning upper-extremity pain or weakness, or episodes of transient quadriplegia until stability of cervical spine can be assured (no contact or collision sports)

Sickle cell disease (no high-exertion, contact or collision sports)

Eating disorder where athlete is not compliant with therapy and follow-up, or where there is evidence of diminished performance or potential injury because of eating disorder

Acute enlargement of spleen or liver


Information from Smith DM. Preparticipation physical evaluation. 2d ed. Minneapolis: Physician and Sportsmedicine, 1997.

TABLE 6   Conditions that Contraindicate Sports Participation

View Table

TABLE 6

Conditions that Contraindicate Sports Participation

Active myocarditis or pericarditis

Hypertrophic cardiomyopathy

Severe hypertension until controlled by therapy (static resistance activities, such as weight lifting, are particularly contraindicated)

Suspected coronary artery disease until fully evaluated (patients with impaired resting left ventricular systolic function < 50%, or exercise-induced ventricular dysrhythmias, or exercise-induced ischemia on exercise stress testing are at greatest risk of sudden death)

Long QT interval syndrome

History of recent concussion and symptoms of postconcussion syndrome (no contact or collision sports)

Poorly controlled convulsive disorder (no archery, riflery, swimming, weight lifting or power lifting, strength training or sports involving heights)

Recurrent episodes of burning upper-extremity pain or weakness, or episodes of transient quadriplegia until stability of cervical spine can be assured (no contact or collision sports)

Sickle cell disease (no high-exertion, contact or collision sports)

Eating disorder where athlete is not compliant with therapy and follow-up, or where there is evidence of diminished performance or potential injury because of eating disorder

Acute enlargement of spleen or liver


Information from Smith DM. Preparticipation physical evaluation. 2d ed. Minneapolis: Physician and Sportsmedicine, 1997.

Cardiologist evaluation and clearance for a patient with hypertrophic cardiomopathy would be mandatory before any athletic participation. Survival is decreased in patients with advanced symptoms at the time of diagnosis, an obstruction gradient of more than 30 mm Hg, left ventricular wall thickness greater than 25 mm on ECG or associated atrial fibrillation.

Mitral valve prolapse (MVP) would not prohibit sports participation in the vast majority of patients. However, there is increased risk if MVP is associated with repetitive supraventricular dysrhythmias or ventricular dysrhythmias with a family history of sudden death, or with a history of embolism or marked mitral regurgitation; therefore, patients with these conditions should be limited to low-intensity sports.19 Sinus bradycardia and similar dysrhythmias are common in young athletes and, like non–exercise-induced ectopic beats, are not a basis for restriction in asymptomatic patients without structural heart disease.

Other dysrhythmias such as pre-excitation syndromes, atrial fibrillation, paroxysmal supraventricular tachycardia and ventricular tachycardia usually require that the athlete be asymptomatic, with documented control of the rhythm, for six months before sports participation can be approved. Associated structural problems with the heart or certain medications used to treat dysrhythmia-related conditions impose additional restrictions (e.g., no contact sports in a patient taking warfarin [Coumadin] for atrial fibrillation). The recommendations of the 26th Bethesda Symposium include a more detailed discussion of athletic participation in persons with cardiac abnormalities.19

MUSCULOSKELETAL INJURIES

Most studies have shown that musculoskeletal findings are the major category of abnormalities leading to restriction from sports activities.3 The most common musculoskeletal injury to restrict an athlete from activity is a knee injury, followed by an ankle injury.20 In knee injuries, the chance of reinjury is high without proper rehabilitation.21 If the athlete must actively use a joint in the sport for which he or she is seeking clearance, several criteria must be fulfilled. There should be no joint effusion, reduced range of motion or symptomatic ligament instability, and at least 80 to 90 percent of normal strength must be present in the affected extremity. Ligament laxity can be a normal physical finding or trait, but symptomatic instability is pathologic.

HEAD AND CERVICAL SPINE INJURY

Concussions are the most common injuries in football. There is no clear agreement on definitions or classifications of concussion severity, treatment or clearance guidelines.22 Individual assessment and clinical judgment should prevail. In general, however, athletes with a history of concussion who have been asymptomatic for at least one week and show no residual neurologic deficits are allowed to participate in sports.

Any persistent symptoms of postconcussion syndrome (headache, dizziness, sensory changes or mental difficulty) are a contraindication to contact sports, even though they may take weeks to resolve. This cautious approach may prevent fatal second-impact syndrome in athletes who have a second concussion while recovering from a first.23 The first concussion is believed to disrupt autoregulation of the brain's blood supply. If a second impact follows, vascular engorgement and increased intracranial pressure result, sometimes producing brain-stem herniation. This syndrome can occur even when the first concussion is mild, with symptoms of decreased alertness or postconcussion amnesia only.

“Burners” or “stingers” are usually secondary to a brachial plexus stretch or cervical root irritation. The athlete should be free of any neck or radicular pain, and have full range of motion and strength in all movements of the cervical spine before returning to sports participation.24 Recurrent episodes or transient quadriplegia requires cervical radiographic studies before clearance.

CONVULSIVE DISORDERS

Guidelines from the American Academy of Pediatrics (AAP) 25 clear young athletes with well-controlled convulsive disorders for participation in conventional school-sponsored sports. However, if a sport entails high risk (e.g., skiing, gymnastics, high diving), neurologic consultation should be considered. Athletes with poorly controlled seizures should be withheld from contact or collision sports and hazardous noncontact sports such as archery, riflery, swimming and weight lifting.

EXERCISE-INDUCED ASTHMA

Status asthmaticus is one of the nontraumatic causes of death in high school and college athletes. However, the incidence in survey populations is only four deaths in 30 million athletes.1 Evidence of exercise-induced asthma is sought in the preparticipation examination so that medical prophylaxis (typically with a beta agonist) can be implemented, not to disqualify the athlete.

HEAT-RELATED ILLNESS

Leading causes of nontraumatic, noncardiac sports death are exertional hyperthermia, followed by exertional rhabdomyolysis and status asthmaticus.1 Physicians can screen for a tendency toward exertional hyperthermia by asking about a previous history of heat-related illness. Athletes with this condition are usually allowed to participate in sports, but temperature extremes must be avoided, and hydration must be ensured.

SICKLE CELL TRAIT

The AAP and the National Collegiate Athletic Association recommend that persons with sickle cell trait be allowed to participate in sports without any restrictions.25 There is evidence that persons with sickle cell trait have increased susceptibility to exertional rhabdomyolysis, with the potential for renal failure and death. Patients with sickle cell trait should be counseled about appropriate hydration and acclimatization to reduce risks.

High exertion and contact or collision sports are generally contraindicated in patients with sickle cell disease, even if appropriate hydration can be ensured.

SOLITARY ORGANS

Whether athletes with one paired organ, especially one kidney, should participate in sports is a topic of controversy. All such patients need to understand the risks so they can make an informed decision. No contact or collision sports are allowed if a single kidney is polycystic or abnormally located.

When an athlete has only one functional eye (with less than 20/40 corrected visual acuity), further evaluation by an ophthalmologist is recommended.26 These athletes can participate only in sports (such as swimming, track and field, and gymnastics) that permit the use of protective eyewear and do not involve projected objects. Wrestling, boxing and martial arts are contraindicated sports.

The only modification for an athlete with one testicle is the use of a protective cup during contact sports. The chance of injury and the subsequent possibility of loss of fertility should be mentioned in counseling.

Final Comment

Although exercise-related sudden deaths in young athletes are rare, efforts to detect potential causes of such deaths are appropriate. Detection of solitary organs and preventive strategies for patients with this condition, especially those who are functionally uniocular, can avert morbidity. The preparticipation examination can achieve these goals and allow the family physician an opportunity to address the major health issues in young adults, such as alcohol and drug use, suicide, sexually transmitted diseases and pregnancy prevention.

The Authors

KURT KUROWSKI, M.D., is assistant professor and vice chairman in the Department of Family Medicine at Finch University of Health Sciences/Chicago Medical School, North Chicago. He received his medical degree from the University of Wisconsin Medical School in Madison, Wis., and completed a family practice residency at Resurrection Hospital in Chicago.

SANGILI CHANDRAN, M.D., is director of the primary care sports medicine department at Christ Hospital and Medical Center in Oak Lawn, Ill., and a clinical assistant professor at Finch University of Health Sciences/Chicago Medical School. He graduated from Madras Medical College, University of Madras, India, where he also completed an orthopedic residency. He completed a family practice residency at Swedish Covenant Hospital, Chicago.

Address correspondence to Kurt Kurowski, M.D., Department of Family Medicine, Finch University of Health Sciences/Chicago Medical School, 3333 Green Bay Rd., North Chicago, IL 60064. Reprints are not available from the authors.


.

REFERENCES

1. Van Camp SP, Bloor CM, Mueller FO, Cantu RC, Olson HG. Nontraumatic sports death in high school and college athletes. Med Sci Sports Exerc. 1995;27:641–7.

2. American Heart Association. Cardiovascular pre-participation screening of competitive athletes. Med Sci Sports Exerc. 1996;28:1445–52.

3. Smith J, Laskowski ER. The preparticipation physical examination. Mayo Clin Proc. 1998;73:419–29.

4. Corrado D, Basso C, Schiavon M, Thiene G. Screening for hypertrophic cardiomyopathy in young athletes. N Engl J Med. 1998;339:364–9.

5. Krowchuk DP. The preparticipation athletic examination: a closer look. Pediatr Ann. 1997;26:37–49.

6. Maron BJ. Hypertrophic cardiomyopathy. Lancet. 1997;350:127–33[Published erratum appears in Lancet 1997;350:1330]

7. Lerakis S, Sheahan RG, Stouffer GA. Hypertrophic cardiomyopathy. Am J Med Sci. 1997;314:324–9.

8. Gott VL, Pyeritz RE, Magovern GJ, Cameron DE, McKusick VA. Surgical treatment of aneurysms of the ascending aorta in the Marfan syndrome. N Engl J Med. 1986;314:1070–4.

9. Welder AA, Melchert RB. Cardiotoxic effects of cocaine and anabolic-androgenic steroids in the athlete. J Pharmacol Toxicol Methods. 1993;29:61–8.

10. Barrow GW, Saha S. Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med. 1988;16:209–16.

11. Wiggins DL, Wiggins ME. The female athlete. Clin Sports Med. 1997;16:593–612.

12. Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer. Am J Sports Med. 1995;23:694–701.

13. Maron BJ, Shirani J, Poliac LC, Mathenge R, Roberts WC, Mueller FO. Sudden death in young competitive athletes. JAMA. 1996;276:199–204.

14. National High Blood Pressure Education Program Report of the National High Blood Pressure Education Program Bethesda, Md: National Institutes of Health, National Heart, Lung, and Blood Institute, 1997. NIH publication no. 98-4080.

15. Thompson PD, Klocke FJ, Levine BD, Van Camp SP. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Forces: coronary artery disease. Med Sci Sports Exerc. 1994;26:S271–5.

16. U.S. Preventive Services Task Force. Guide to clinical preventive services. 2d ed. Baltimore: Williams and Wilkins, 1996:8.

17. Smith DM. Preparticipation physical evaluation. 2d ed. Minneapolis: Physician and Sportsmedicine, 1997.

18. Maron BJ, Casey SA, Poliac LC, Gohman TE, Almquist AK, Aeppli DM. Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. JAMA. 1999;281:650–5[Published erratum appears in JAMA 1999;281:2288]

19. Maron BJ, Isner JM, McKenna WJ. 26th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Med Sci Sports Exerc. 1994;26:S261–7.

20. Grafe MW, Paul GR, Foster TE. The preparticipation sports examination for high school and college athletes. Clin Sports Med. 1997;16:569–91.

21. Abbott HG, Kress JB. Preconditioning in the prevention of knee injuries. Arch Phys Med Rehabil. 1969;50:326–33.

22. Tough call: when is it safe to return to play after concussion? Sportsmedicine Digest. 1995;17:3–6.

23. Cantu RC. Second-impact syndrome. Clin Sports Med. 1998;17:37–44.

24. Cantu RC, Bailes JE, Wilberger JE. Guidelines for return to contact or collision sport after a cervical spine injury. Clin Sports Med. 1998;17:137–46.

25. American Academy of Pediatrics Committee on Sports Medicine. Recommendations for participation in competitive sports. Pediatrics. 1988;81:737–9.

26. Stock JG, Cornell FM. Prevention of sports-related eye injury. Am Fam Physician. 1991;44:515–20.

Members of various family practice departments develop articles for “Problem-Oriented Diagnosis.” This article is one in a collaborative series coordinated by David R. Rudy, M.D., M.P.H., from the Department of Family Medicine at the Chicago Medical School of Finch University of Health Sciences, and Martin Lipsky, M.D., from the Department of Family Medicine at Northwestern University Medical School, Chicago.


Copyright © 2000 by the American Academy of Family Physicians.
This content is owned by the AAFP. A person viewing it online may make one printout of the material and may use that printout only for his or her personal, non-commercial reference. This material may not otherwise be downloaded, copied, printed, stored, transmitted or reproduced in any medium, whether now known or later invented, except as authorized in writing by the AAFP. Contact afpserv@aafp.org for copyright questions and/or permission requests.

Want to use this article elsewhere? Get Permissions


Article Tools

  • Print page
  • Share this page
  • AFP CME Quiz

Information From Industry

More in Pubmed

Navigate this Article