Asymptomatic Bacteriuria in Adults

RICHARD COLGAN, M.D., University of Maryland School of Medicine, Baltimore, Maryland
LINDSAY E. NICOLLE, M.D., University of Manitoba, Winnipeg, Canada
ANDREW MCGLONE, M.D., University of Maryland School of Medicine, Baltimore, Maryland
THOMAS M. HOOTON, M.D., University of Washington School of Medicine, Seattle, Washington

A common dilemma in clinical medicine is whether to treat asymptomatic patients who present with bacteria in their urine. There are few scenarios in which antibiotic treatment of asymptomatic bacteriuria has been shown to improve patient outcomes. Because of increasing antimicrobial resistance, it is important not to treat patients with asymptomatic bacteriuria unless there is evidence of potential benefit. Women who are pregnant should be screened for asymptomatic bacteriuria in the first trimester and treated, if positive. Treating asymptomatic bacteriuria in patients with diabetes, older persons, patients with or without indwelling catheters, or patients with spinal cord injuries has not been found to improve outcomes. (Am Fam Physician 2006;74:985-90. Copyright © 2006 American Academy of Family Physicians.)
Asymptomatic Bacteriuria

are not useful for diagnosing UTI in an asymptomatic patient. A urine dipstick leukocyte esterase test showing trace or more white blood cells has a sensitivity of 75 to 96 percent and specificity of 94 to 98 percent for detecting pyuria; however, pyuria is not specific for UTI and may occur with other inflammatory disorders of the genitourinary tract (e.g., vaginitis). Urinalysis with microscopic examination for bacteria remains a useful test for the identification of bacteriuria.

Limitations of the dipstick nitrite test in diagnosing bacteriuria include: infection with non-nitrite–producing pathogens; delays between obtaining and testing the sample; and insufficient time since the last void for nitrites to appear at detectable levels. Combining the leukocyte esterase and nitrite tests results in higher specificity than using either test alone.

Premenopausal, Nonpregnant Women

Premenopausal, nonpregnant women with asymptomatic bacteriuria experience no adverse effects and usually will clear their bacteriuria spontaneously. However, these women are more likely to experience subsequent symptomatic UTI than women who do not have asymptomatic bacteriuria. One study randomized women with bacteriuria to receive one week of nitrofurantoin (Furadantin) or placebo; those receiving the antibiotic had a significantly lower prevalence of bacteriuria at six months, but not at one year. The patients treated with antibiotics were just as likely as those in the placebo arm to have a symptomatic UTI in the year after therapy. Although women with asymptomatic bacteriuria are more likely to have subsequent symptomatic UTIs, treatment of asymptomatic bacteriuria does not decrease the frequency of symptomatic

TABLE 1
Prevalence of Asymptomatic Bacteriuria in Selected Populations

<table>
<thead>
<tr>
<th>Population</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy premenopausal women</td>
<td>1.0 to 5.0</td>
</tr>
<tr>
<td>Pregnant women</td>
<td>1.9 to 9.5</td>
</tr>
<tr>
<td>Postmenopausal women (50 to 70 years of age)</td>
<td>2.8 to 8.6</td>
</tr>
<tr>
<td>Patients with diabetes</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>9.0 to 27.0</td>
</tr>
<tr>
<td>Men</td>
<td>0.7 to 1.0</td>
</tr>
<tr>
<td>Older community-dwelling patients</td>
<td></td>
</tr>
<tr>
<td>Women (older than 70 years)</td>
<td>>15.0</td>
</tr>
<tr>
<td>Men</td>
<td>3.6 to 19.0</td>
</tr>
<tr>
<td>Older long-term care residents</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>25.0 to 50.0</td>
</tr>
<tr>
<td>Men</td>
<td>15.0 to 40.0</td>
</tr>
<tr>
<td>Patients with spinal cord injuries</td>
<td></td>
</tr>
<tr>
<td>Intermittent catheter</td>
<td>23.0 to 89.0</td>
</tr>
<tr>
<td>Sphincterotomy and condom catheter</td>
<td>57.0</td>
</tr>
<tr>
<td>Patients undergoing hemodialysis</td>
<td>28.0</td>
</tr>
<tr>
<td>Patients with an indwelling catheter</td>
<td></td>
</tr>
<tr>
<td>Short-term</td>
<td>9.0 to 23.0</td>
</tr>
<tr>
<td>Long-term</td>
<td>100</td>
</tr>
</tbody>
</table>

Information from references 3 through 8.
Asymptomatic Bacteriuria

Asymptomatic bacteriuria has not been shown to be associated with detrimental long-term outcomes (e.g., hypertension, renal failure, genitourinary cancer, or decreased survival). For these reasons, the IDSA does not recommend screening for or treatment of asymptomatic bacteriuria in premenopausal nonpregnant women."

Pregnant Women

Women with asymptomatic bacteriuria during pregnancy are more likely to deliver premature or low-birth-weight infants and have a 20- to 30-fold increased risk of developing pyelonephritis during pregnancy compared with women without bacteriuria. A Cochrane systematic review found that studies have consistently reported that treatment of asymptomatic bacteriuria in pregnancy decreases the risk of subsequent pyelonephritis from a range of 20 to 35 percent to a range of 1 to 4 percent. Antimicrobial treatment of asymptomatic bacteriuria also improves fetal outcomes, with decreases in the frequency of low-birth-weight infants and preterm delivery. Early studies usually continued antimicrobial therapy for the duration of pregnancy; however, more recent studies reported similar benefits in patients treated for 14 days with nitrofurantoin or trimethoprim/sulfamethoxazole (TMP/SMX; Bactrim, Septra) compared with those treated with continuous antimicrobial therapy to the end of pregnancy. The IDSA recommends a course of three to seven days of antimicrobial therapy for pregnant women with asymptomatic bacteriuria. A Cochrane systematic review found insufficient evidence to determine whether a single dose regimen is as effective as treatments of longer duration.

Because leukocyte esterase and nitrite tests have low sensitivity for identifying bacteriuria in women who are pregnant, these patients should be screened with urine cultures; however, the optimal frequency of urine culture screening has not been established. A single urine culture at the end of the first trimester generally is recommended based on clinical outcomes and cost-effectiveness. Women with asymptomatic bacteriuria or symptomatic UTI during pregnancy should be treated (Table 3) and should undergo periodic screening for the duration of their pregnancy. The IDSA makes no recommendations for subsequent screening of

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>Diagnostic Criteria for Asymptomatic Bacteriuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midstream clean-catch urine specimen:</td>
<td>For women, two consecutive specimens with isolation of the same species in quantitative counts of at least 100,000 CFUs per mL of urine. For men, a single specimen with one bacterial species isolated in a quantitative count of at least 100,000 CFUs per mL.</td>
</tr>
<tr>
<td>Catheterized urine specimen:</td>
<td>In women or men, a single specimen with one bacterial species isolated in a quantitative count of at least 100 CFUs per mL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 3</th>
<th>Oral Antibiotics for Treatment of Pregnant Women with Asymptomatic Bacteriuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA Pregnancy Category B: Safety for use in pregnancy has not been established</td>
<td>Amoxicillin Amoxicillin/clavulanate (Augmentin) Ampicillin Cefuroxime (Ceftin) Cephalexin (Keflex) Nitrofurantoin (Furadantin)</td>
</tr>
<tr>
<td>Pregnancy Category C: No adequate well-controlled studies have been performed in women; should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus</td>
<td>Ciprofloxacin (Cipro) Gatifloxacin (Tequin) Levofloxacin (Levaquin) Norfloxacin (Noroxin) Trimethoprim/sulfamethoxazole (Bactrim, Septra)</td>
</tr>
</tbody>
</table>

CFU = colony-forming unit.
pregnant women found to have no asymptomatic bacteriuria at the initial screen.2

Women with Diabetes
Studies of women with diabetes show no difference between initially asymptomatic bacteriuric and nonbacteriuric women in the incidence of UTI, mortality, or progression to diabetic complications at 18 months25 or 14 years.26 In a study of antibiotic therapy versus no therapy for women with diabetes and asymptomatic bacteriuria, antimicrobial therapy did not delay or decrease the frequency of symptomatic UTI or the rate of hospitalization for UTI or other causes at up to three years’ follow-up.27 These studies support the IDSA guidelines2 that screening for or treatment of asymptomatic bacteriuria in women with diabetes is not indicated.

Older Patients with Asymptomatic Bacteriuria
Studies of asymptomatic bacteriuria in pre- and postmenopausal women report similar outcomes regardless of age.28,29 A study of ambulatory women in a long-term care facility who were assigned to receive antimicrobial therapy or placebo for bacteriuria showed a decrease in prevalence of asymptomatic bacteriuria at six months among those receiving antibiotics, but no significant difference in symptomatic episodes.30 Adverse outcomes attributable to asymptomatic bacteriuria were not observed in a cohort of ambulatory male veterans older than 65 years at several years’ follow-up.10

Clinical trials of older residents in long-term care facilities have shown no benefits from screening for or antimicrobial treatment of asymptomatic bacteriuria.31–33 Although antimicrobial treatment does not decrease symptomatic infection or improve survival, there is an increased incidence of adverse antimicrobial effects and reinfection with antibiotic-resistant organisms. Thus, the IDSA does not recommend screening for or treatment of asymptomatic bacteriuria in older patients.2

Patients with Spinal Cord Injuries
Patients with spinal cord injuries have a higher prevalence of asymptomatic bacteriuria and symptomatic UTI.5,34 Patients with spinal cord injuries and with asymptomatic bacteriuria treated using antibiotics uniformly showed early recurrence of bacteriuria following therapy. When treated with seven to 14 days of antibiotics, 93 percent of patients were again bacteriuric by 30 days.35 Posttreatment urine cultures showed increased antimicrobial resistance as well. A prospective, randomized trial in patients with asymptomatic bacteriuria and intermittent catheterization showed similar rates of UTI at follow-up, whether or not prophylactic antimicrobials were administered.36 Although there are few trials addressing the treatment of asymptomatic bacteriuria in patients with spinal cord injuries, review articles and consensus guidelines support the IDSA recommendations that asymptomatic bacteriuria should not be screened for or treated in patients with spinal cord injuries.

Patients with Indwelling Urethral Catheters
Patients with chronic indwelling Foley catheters are uniformly bacteriuric, but treatment is warranted only if the patient is symptomatic. Urine that is cloudy or foul-smelling often prompts a call from a long-term care facility to the physician, with an expectation that an evaluation, if not antibiotic therapy, will be ordered. However, in the asymptomatic patient, cloudy or foul-smelling urine is not an indication for urinalysis, culture, or antimicrobial treatment. A study of residents in long-term care facilities with chronic indwelling catheters and bacteriuria who were treated with cephalexin (Keflex) or no therapy showed no differences in the incidence of fever or reinfection; however, patients who received antibiotic therapy had twice the incidence of subsequent microbial resistance to cephalexin.37

When possible, the indwelling catheter should be removed, and the patient should receive clean intermittent catheterization to reduce the risk of symptomatic UTI. The replacement of a chronic indwelling Foley catheter is uniformly recommended.
Asymptomatic Bacteriuria

The Authors

RICHARD COLGAN, M.D., is associate professor and director of undergraduate education of the Department of Family Medicine at the University of Maryland School of Medicine, Baltimore. He received his medical degree from the Autonomous University of Guadalajara, Mexico, and completed a residency in family medicine at the University of Maryland School of Medicine.

LINDSAY E. NICOLLE, M.D., is a professor of internal medicine and medical microbiology at the University of Manitoba in Winnipeg, Canada, where she received her medical degree.

ANDREW MCGLONE, M.D., currently is in private practice in Annapolis, Md. While writing this article, he was chief resident in the Department of Family Medicine at the University of Maryland School of Medicine. Dr. McGlone received his medical degree from the University of Maryland School of Medicine, where he also completed a residency in family medicine.

THOMAS M. HOOTON, M.D., currently is professor of medicine and director of the Institute for Women’s Health at the University of Miami (Fla.) Miller School of Medicine. While writing this article, he was a professor of medicine in the Division of Allergy and Infectious Diseases at the University of Washington School of Medicine, Seattle, and medical director of the Harborview Medical Center HIV/AIDS Clinic in Seattle. Dr. Hooton received his medical degree from the University of Texas Southwestern Medical School, Dallas, and completed residencies in preventive medicine at the Centers for Disease Control and Prevention, Atlanta, Ga., and in medicine at the University of Washington School of Medicine.

Address correspondence to Richard Colgan, M.D., Dept. of Family Medicine, University of Maryland School of Medicine, 29 South Paca St., Baltimore, MD 21201 (e-mail: rcolgan@som.umaryland.edu). Reprints are not available from the authors.

Author disclosure: Nothing to disclose.

REFERENCES

Asymptomatic Bacteriuria

