Point-of-Care Guides

Procalcitonin-Guided Treatment of Respiratory Tract Infections



FREE PREVIEW Log in or buy this issue to read the full article. AAFP members and paid subscribers get free access to all articles. Subscribe now.


FREE PREVIEW Subscribe or buy this issue. AAFP members and paid subscribers get free access to all articles.

Am Fam Physician. 2008 Sep 15;78(6):756-757.

Clinical Question

Does procalcitonin have a role in guiding treatment of respiratory tract infection?

Evidence Summary

Procalcitonin is a precursor to calcitonin. The final step in the synthesis of calcitonin is inhibited by cytokines and endotoxin released during bacterial infections; therefore, procalcitonin levels are selectively elevated in patients with bacterial infections.1 Therapy guided by procalcitonin levels has been proposed for a variety of settings, from the outpatient management of respiratory tract infections to the care of critically ill patients with sepsis. The focus of this review is the use of procalcitonin levels to guide the care of patients with acute respiratory tract infection.

Several studies have evaluated usual care of respiratory tract infection versus procalcitonin-guided therapy.24 In one study, 243 patients presenting to the emergency department with acute respiratory tract infection (i.e., dyspnea, cough, or both) were randomized to receiveantibiotictherapyortherapy guided by procalcitonin levels.2 Patients with cystic fibrosis, active tuberculosis, or nosocomial pneumonia, and those severely immunocompromised were excluded. Antibiotics were strongly discouraged with procalcitonin levels less than 0.1 ng per mL, discouraged with levels 0.1 to 0.24 ng per mL, encouraged with levels 0.25 to 0.50 ng per mL, and strongly encouraged with levels greater than 0.5 ng per mL. The final diagnosis was pneumonia in 36 percent of patients, chronic obstructive pulmonary disease (COPD) exacerbation in 25 percent, acute bronchitis in 24 percent, and asthma exacerbation in 5 percent. Procalcitonin-guided therapy reduced antibiotic use from 83 to 44 percent (P < .0001) without changes in quality-of-life scores, laboratory or physiologic parameters, hospital admissions, length of hospitalization, or mortality.

A second study included 302 adults admitted to the emergency department for community-acquired pneumonia.3 Patients were randomized to receive usual care or therapy guided by procalcitonin levels (antibiotics were strongly discouraged with procalcitonin levels less than 0.1 ng per mL, discouraged with levels 0.1 to 0.25 ng per mL, encouraged with levels greater than 0.25 ng per mL, and strongly encouraged with levels greater than 0.5 ng per mL). Patients with cystic fibrosis, active tuberculosis, or nosocomial pneumonia, and those severely immunocompromised were excluded. Patients in the procalcitonin group were less likely to receive an antibiotic on admission compared with those in the control group (85 versus 99 percent, respectively) and had a shorter median duration of antibiotic therapy (five versus 12 days, respectively); otherwise, the two groups had similar outcomes.

A third study included 226 adults hospitalized for a COPD exacerbation.4 Patients were randomized to receive usual care or therapy guided by procalcitonin levels (antibiotics were not recommended with procalcitonin levels less than 0.1 ng per mL, were optional with levels 0.1 to 0.25 ng per mL, and were recommended with levels greater than 0.25 ng per mL). Patients who received procalcitonin-guided care were less likely to receive an antibiotic than those in the control group (40 versus 72 percent, respectively, P < .0001). There was no difference between groups in days to the next exacerbation, exacerbations in the next six months, lung function, symptoms, functional status, or length of hospitalization.

Procalcitonin has also been studied for its usefulness in predicting mortality. In a study of 1,651 patients admitted with community-acquired pneumonia, procalcitonin levels were performed within a mean of 1.3 hours after admission.5 Scores on the CURB-65 (Confusion, Uremia, Respiratory rate, low Blood pressure, 65 years of age or older) and Pneumonia Severity Index, which determine prognosis for pneumonia, were calculated for each patient, and procalcitonin and the two prognostic scores were correlated. With all three, the risk of 30-day mortality increased with increasing values or scores. Procalcitonin levels added little to the information about prognosis in low-risk patients (defined as patients in Pneumonia Severity Index class I, II, or III or in CURB-65 group 1). However, among high-risk patients, those with procalcitonin levels less than 0.1 ng per mL had a much better prognosis, with negative likelihood ratios between 0.09 and 0.18.

General guidelines for interpretation of procalcitonin levels are shown in Table 1.24 However, there are several caveats regarding the use of procalcitonin to guide decisions about antibiotic therapy in patients with acute respiratory tract infection. Although point-of-care tests for procalcitonin levels have been developed, they require a more sophisticated laboratory than those available in most family medicine offices. The tests are also relatively costly ($50 to $100). Finally, the three key studies of their use in patients with acute respiratory tract infection were all performed by the same group, were funded by the company that makes the test, and included an investigator who has received substantial lecture and advisory board fees related to its use.24

Table 1

Interpretation of Procalcitonin Test Results in Patients with Acute Respiratory Tract Infection

Procalcitonin level Suggested action

< 0.1 ng per mL

Antibiotics strongly discouraged

0.1 to 0.24 ng per mL

Antibiotics discouraged

0.25 to 0.50 ng per mL

Antibiotics encouraged

> 0.50 ng per mL

Antibiotics strongly encouraged


Information from references 2 through 4.

Table 1   Interpretation of Procalcitonin Test Results in Patients with Acute Respiratory Tract Infection

View Table

Table 1

Interpretation of Procalcitonin Test Results in Patients with Acute Respiratory Tract Infection

Procalcitonin level Suggested action

< 0.1 ng per mL

Antibiotics strongly discouraged

0.1 to 0.24 ng per mL

Antibiotics discouraged

0.25 to 0.50 ng per mL

Antibiotics encouraged

> 0.50 ng per mL

Antibiotics strongly encouraged


Information from references 2 through 4.

Applying the Evidence

A 58-year-old man presents with cough, fever, and productive sputum that have persisted for two days. He has well-controlled hypertension and is otherwise healthy. Chest radiography reveals no infiltrate. His procalcitonin test result is 0.05 ng per mL. Should you prescribe an antibiotic?

Answer: Because bacterial infection is unlikely, you recommend rest, cough suppressants, and follow-up in three days, but no antibiotics.

Address correspondence to Mark Ebell, MD, MS, at ebell@uga.edu. Reprints are not available from the author.

Author disclosure: Nothing to disclose.

REFERENCES

1. Oczenski W, Fitzgerald RD, Schwarz S. Procalcitonin: a new parameter for the diagnosis of bacterial infection in the peri-operative period. Eur J Anaesthesiol. 1998;15(2):202–209.

2. Christ-Crain M, Jaccard-Stolz D, Bingisser R, et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: clusterrandomised, single-blinded intervention trial. Lancet. 2004;363(9409):600–607.

3. Christ-Crain M, Stolz D, Bingisser R, et al. Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med. 2006;174(1):84–93.

4. Stolz D, Christ-Crain M, Bingisser R, et al. Antibiotic treatment of exacerbations of COPD: a randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest. 2007;131(1):9–19.

5. Huang DT, Weissfeld LA, Kellum JA, et al. Risk prediction with procalcitonin and clinical rules in community-acquired pneumonia. Ann Emerg Med. 2008;52(1):48–58.

This guide is one in a series that offers evidence-based tools to assist family physicians in improving their decision making at the point of care.


Copyright © 2008 by the American Academy of Family Physicians.
This content is owned by the AAFP. A person viewing it online may make one printout of the material and may use that printout only for his or her personal, non-commercial reference. This material may not otherwise be downloaded, copied, printed, stored, transmitted or reproduced in any medium, whether now known or later invented, except as authorized in writing by the AAFP. Contact afpserv@aafp.org for copyright questions and/or permission requests.

Want to use this article elsewhere? Get Permissions


Article Tools

  • Print page
  • Share this page
  • AFP CME Quiz

Information From Industry

More in Pubmed

Navigate this Article