Cardiomyopathy: An Overview

 

Am Fam Physician. 2017 Nov 15;96(10):640-646.

  Patient information: See related handout on cardiomyopathy.

Author disclosure: No relevant financial affiliation.

The definition and classification of cardiomyopathy have evolved considerably in recent years. Cardiomyopathy can be separated into primary (genetic, mixed, or acquired) and secondary categories, which result in varied phenotypes including dilated, hypertrophic, and restrictive patterns. Hypertrophic cardiomyopathy is the most common primary cardiomyopathy and can cause exertional dyspnea, presyncope, atypical chest pain, heart failure, and sudden cardiac death. Dilated cardiomyopathy can be genetic or acquired and typically presents with classic symptoms of heart failure with reduced ejection fraction. Restrictive cardiomyopathy is much less common and often associated with systemic disease. Family physicians should be alert for acquired variants of cardiomyopathy, including peripartum and stress-induced cardiomyopathy, as well as rare variants, such as arrhythmogenic right ventricular dysplasia and left ventricular noncompaction. In addition to history and physical examination, diagnosis of cardiomyopathy includes electrocardiography and echocardiography testing. Treatment may include appropriately staged therapy for heart failure, appropriate activity restriction, evaluation for implantable cardioverter-defibrillator placement, and consideration of heart transplantation in refractory cases. Genetic testing of families is an emerging modality with some potential to augment traditional screening performed by family physicians.

Manifestations of cardiomyopathy range from microscopic alterations in cardiac myocytes to fulminant heart failure with inadequate tissue perfusion, fluid accumulation, and cardiac rhythm dysfunction. Historically, cardiomyopathy, which literally means heart muscle disease, was separated into hypertrophic, dilated, and restrictive categories. However, advances in genomics have made it clear that there is variety in phenotypic expression.1

WHAT IS NEW ON THIS TOPIC: CARDIOMYOPATHY

Pathologies with a known cardiovascular cause, including hypertension, valvular disease, congenital heart disease, and coronary ischemia, are now excluded from the term cardiomyopathy.

An uncommon and recently identified congenital cardiomyopathy is left ventricular noncompaction, a condition of embryonic origin that interferes with the development of mature heart muscle. The disease is defined by significant trabeculation of the myocardium, in addition to development of intertrabecular recesses in the left ventricle.

 Enlarge     Print

SORT: KEY RECOMMENDATIONS FOR PRACTICE

Clinical recommendationEvidence ratingReferences

Heart failure with reduced ejection fraction should be managed according to the most recent American College of Cardiology/American Heart Association guidelines.

C

5, 6

Hypertrophic cardiomyopathy should be managed according to the most recent American College of Cardiology Foundation/American Heart Association guidelines.

C

12

An implanted cardioverter-defibrillator should be placed in patients who are at risk of sudden cardiac death.

C

1

Heart transplantation should be considered if cardiomyopathy is refractory to medical therapy.

C

8

Patients with cardiomyopathy should be referred for genetic counseling.

C

44


A = consistent, good-quality patient-oriented evidence; B = inconsistent or limited-quality patient-oriented evidence; C = consensus, disease-oriented evidence, usual practice, expert opinion, or case series. For information about the SORT evidence rating system, go to https://www.aafp.org/afpsort.

SORT: KEY RECOMMENDATIONS FOR PRACTICE

Clinical recommendationEvidence ratingReferences

Heart failure with reduced ejection fraction should be managed according to the most recent American College of Cardiology/American Heart Association guidelines.

C

5, 6

Hypertrophic cardiomyopathy should be managed according to the most recent American College of Cardiology Foundation/American Heart Association guidelines.

C

12

An implanted cardioverter-defibrillator should be placed in patients who are at risk of sudden cardiac death.

C

1

Heart transplantation should be considered if cardiomyopathy is refractory to medical therapy.

C

8

Patients with cardiomyopathy should be referred for genetic counseling.

C

44


A = consistent, good-quality patient-oriented evidence; B = inconsistent or limited-quality patient-oriented evidence; C = consensus, disease-oriented evidence, usual practice, expert opinion, or case series. For information about the SORT evidence rating system, go to https://www.aafp.org/afpsort.

The American Heart Association now endorses a classification system that categorizes cardiomyopathy as primary or secondary. In primary cases, the disease process is chiefly confined to the heart. Secondary cardiomyopathy describes conditions in which cardiac involvement occurs as part of a systemic condition. This classification system is imperfect, and there is often overlap.1

Primary cardiomyopathies can be genetic, acquired, or mixed in etiology (Table 1

The Authors

show all author info

JAY BRIELER, MD, is associate program director of the family medicine residency and assistant professor in the Department of Family and Community Medicine, Saint Louis University, St. Louis, Mo....

MATTHEW A. BREEDEN, MD, is an assistant professor in the Department of Family and Community Medicine, Saint Louis University.

JANE TUCKER, MD, is an assistant professor in the Department of Family and Community Medicine, Saint Louis University.

Address correspondence to Jay Brieler, MD, Saint Louis University, 6420 Clayton Rd., Rm. 2234, St. Louis, MO 63117 (e-mail: brielerj@slu.edu). Reprints are not available from the authors.

Author disclosure: No relevant financial affiliation.

REFERENCES

show all references

1. Maron BJ, Towbin JA, Thiene G, et al.; American Heart Association; Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–1816....

2. Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29(2):270–276.

3. Luk A, Ahn E, Soor GS, Butany J. Dilated cardiomyopathy: a review. J Clin Pathol. 2009;62(3):219–225.

4. Nihoyannopoulos P, Dawson D. Restrictive cardiomyopathies. Eur J Echocardiogr. 2009;10(8):iii23–iii33.

5. Yancy CW, Jessup M, Bozkurt B, et al.; American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–e239.

6. Yancy CW, Jessup M, Bozkurt B, et al. 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2016;68(13):1476–1488.

7. Hunt SA, Abraham WT, Chin MH, et al.; American College of Cardiology; American Heart Association Task Force on Practice Guidelines; American College of Chest Physicians; International Society for Heart and Lung Transplantation; Heart Rhythm Society. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005;112(12):e154–235.

8. Argulian E, Sherrid MV, Messerli FH. Misconceptions and facts about hypertrophic cardiomyopathy. Am J Med. 2016;129(2):148–152.

9. Alcalai R, Seidman JG, Seidman CE. Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J Cardiovasc Electrophysiol. 2008;19(1):104–110.

10. Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(3):201–211.

11. Spirito P, Seidman CE, McKenna WJ, Maron BJ. The management of hypertrophic cardiomyopathy. N Engl J Med. 1997;336(11):775–785.

12. Gersh BJ, Maron BJ, Bonow RO, et al.; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines; American Association for Thoracic Surgery; American Society of Echocardiography; American Society of Nuclear Cardiology; Heart Failure Society of America; Heart Rhythm Society; Society for Cardiovascular Angiography and Interventions; Society of Thoracic Surgeons. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124(24):e783–e831.

13. Fifer MA, Vlahakes GJ. Management of symptoms in hypertrophic cardiomyopathy. Circulation. 2008;117(3):429–439.

14. Dubourg O, Charron P, Sirol M, Siam-Tsieu V, Mansencal N. [Risk stratification of sudden death in hypertrophic cardiomyopathy in 2016]. Presse Med. 2016;45(10):903–910.

15. Ammirati E, Contri R, Coppini R, Cecchi F, Frigerio M, Olivotto I. Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. Eur J Heart Fail. 2016;18(9):1106–1118.

16. Smedira NG, Lytle BW, Lever HM, et al. Current effectiveness and risks of isolated septal myectomy for hypertrophic obstructive cardiomyopathy. Ann Thorac Surg. 2008;85(1):127–133.

17. Ralph-Edwards A, Woo A, McCrindle BW, et al. Hypertrophic obstructive cardiomyopathy: comparison of outcomes after myectomy or alcohol ablation adjusted by propensity score. J Thorac Cardiovasc Surg. 2005;129(2):351–358.

18. Maron MS, Kalsmith BM, Udelson JE, Li W, DeNofrio D. Survival after cardiac transplantation in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3(5):574–579.

19. Murray B. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C): a review of molecular and clinical literature. J Genet Couns. 2012;21(4):494–504.

20. Basso C, Corrado D, Marcus FI, Nava A, Thiene G. Arrhythmogenic right ventricular cardiomyopathy. Lancet. 2009;373(9671):1289–1300.

21. McGregor SM, Husain AN. A brief review and update of the clinicopathologic diagnosis of arrhythmogenic cardiomyopathy. Arch Pathol Lab Med. 2015;139(9):1181–1186.

22. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J. 2010;31(7):806–814.

23. Corrado D, Wichter T, Link MS, et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an international task force consensus statement. Eur Heart J. 2015;36(46):3227–3237.

24. Stacey RB, Caine AJ Jr, Hundley WG. Evaluation and management of left ventricular noncompaction cardiomyopathy. Curr Heart Fail Rep. 2015;12(1):61–67.

25. Ikeda U, Minamisawa M, Koyama J. Isolated left ventricular non-compaction cardiomyopathy in adults. J Cardiol. 2015;65(2):91–97.

26. Kumar S, Stevenson WG, John RM. Arrhythmias in dilated cardiomyopathy. Card Electrophysiol Clin. 2015;7(2):221–233.

27. Morales A, Hershberger RE. The Rationale and timing of molecular genetic testing for dilated cardiomyopathy. Can J Cardiol. 2015;31(11):1309–1312.

28. Jong P, Yusuf S, Rousseau MF, Ahn SA, Bangdiwala SI. Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study. Lancet. 2003;361(9372):1843–1848.

29. Granger CB, McMurray JJ, Yusuf S, et al.; CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003;362(9386):772–776.

30. McMurray JJ, Packer M, Desai AS, et al.; PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.

31. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999;353(9146):9–13.

32. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet. 2001;357(9266):1385–1390.

33. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353(9169):2001–2007.

34. Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997;336(4):267–276.

35. Ryan TD, Madueme PC, Jefferies JL, et al. Utility of echocardiography in the assessment of left ventricular diastolic function and restrictive physiology in children and young adults with restrictive cardiomyopathy: a comparative echocardiography-catheterization study. Pediatr Cardiol. 2017;38(2):381–389.

36. Sisakian H. Cardiomyopathies: evolution of pathogenesis concepts and potential for new therapies. World J Cardiol. 2014;6(6):478–494.

37. Sliwa K, Hilfiker-Kleiner D, Petrie MC, et al.; Heart Failure Association of the European Society of Cardiology Working Group on Peripartum Cardiomyopathy. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur J Heart Fail. 2010;12(8):767–778.

38. Arany Z, Elkayam U. Peripartum cardiomyopathy. Circulation. 2016; 133(14):1397–1409.

39. Dekker RL, Morton CH, Singleton P, Lyndon A. Women's experiences being diagnosed with peripartum cardiomyopathy: a qualitative study. J Midwifery Womens Health. 2016;61(4):467–473.

40. Deshmukh A, Kumar G, Pant S, Rihal C, Murugiah K, Mehta JL. Prevalence of Takotsubo cardiomyopathy in the United States. Am Heart J. 2012;164(1):66–71e1.

41. Eshtehardi P, Koestner SC, Adorjan P, et al. Transient apical ballooning syndrome—clinical characteristics, ballooning pattern, and long-term follow-up in a Swiss population. Int J Cardiol. 2009;135(3):370–375.

42. Ono R, Falcão LM. Takotsubo cardiomyopathy systematic review: pathophysiologic process, clinical presentation and diagnostic approach to Takotsubo cardiomyopathy. Int J Cardiol. 2016;209:196–205.

43. Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104(4):557–567.

44. Hershberger RE, Lindenfeld J, Mestroni L, Seidman CE, Taylor MR, Towbin JA; Heart Failure Society of America. Genetic evaluation of cardiomyopathy—a Heart Failure Society of America practice guideline. J Card Fail. 2009;15(2):83–97.

45. Kelly M, Semsarian C. Multiple mutations in genetic cardiovascular disease: a marker of disease severity? Circ Cardiovasc Genet. 2009;2(2):182–190.

46. Ho CY. Genetics and clinical destiny: improving care in hypertrophic cardiomyopathy. Circulation. 2010;122(23):2430–2440.

47. Maron BJ, Epstein SE, Roberts WC. Causes of sudden death in competitive athletes. J Am Coll Cardiol. 1986;7(1):204–214.

48. Maron BJ, Ackerman MJ, Nishimura RA, Pyeritz RE, Towbin JA, Udelson JE. Task Force 4: HCM and other cardiomyopathies, mitral valve prolapse, myocarditis, and Marfan syndrome. J Am Coll Cardiol. 2005;45(8):1340–1345.

49. Pelliccia A, Fagard R, Bjørnstad HH, et al.; Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology; Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Recommendations for competitive sports participation in athletes with cardiovascular disease: a consensus document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26(14):1422–1445.

 

 

Copyright © 2017 by the American Academy of Family Physicians.
This content is owned by the AAFP. A person viewing it online may make one printout of the material and may use that printout only for his or her personal, non-commercial reference. This material may not otherwise be downloaded, copied, printed, stored, transmitted or reproduced in any medium, whether now known or later invented, except as authorized in writing by the AAFP. Contact afpserv@aafp.org for copyright questions and/or permission requests.

Want to use this article elsewhere? Get Permissions

CME Quiz

More in AFP


Editor's Collections


Related Content


MOST RECENT ISSUE


Dec 15, 2017

Access the latest issue of American Family Physician

Read the Issue


Email Alerts

Don't miss a single issue. Sign up for the free AFP email table of contents.

Sign Up Now

Navigate this Article