Items in AFP with MESH term: Heparin, Low-Molecular-Weight

Outpatient Management of Anticoagulation Therapy - Article

ABSTRACT: The Seventh American College of Chest Physicians (ACCP) Conference on Antithrombotic and Thrombolytic Therapy provides guidelines for outpatient management of anticoagulation therapy. The ACCP guidelines recommend short-term warfarin therapy, with the goal of maintaining an International Normalized Ratio (INR) of 2.5 +/- 0.5, after major orthopedic surgery. Therapy for venous thromboembolism includes an INR of 2.5 +/- 0.5, with the length of therapy determined by associated conditions. For patients with atrial fibrillation, the INR is maintained at 2.5 +/- 0.5 indefinitely; for most patients with mechanical valves, the recommended INR is 3.0 +/- 0.5 indefinitely. Use of outpatient low-molecular-weight heparin (LMWH) is as safe and effective as inpatient unfractionated heparin for treatment of venous thromboembolism. The ACCP recommends starting warfarin with unfractionated heparin or LMWH for at least five days and continuing until a therapeutic INR is achieved. Because patients with venous thromboembolism and cancer who have been treated with LMWH have a survival advantage that extends beyond their venous thromboembolism treatment, the ACCP recommends beginning their therapy with three to six months of LMWH. When invasive procedures require the interruption of oral anticoagulation therapy, recommendations for bridge therapy are determined by balancing the risk of bleeding against the risk of thromboembolism. Patients at higher risk of thromboembolization should stop warfarin therapy four to five days before surgery and start LMWH or unfractionated heparin two to three days before surgery.


Venous Thromboembolism During Pregnancy - Article

ABSTRACT: Venous thromboembolism is the leading cause of maternal death in the United States. Pregnancy is a risk factor for deep venous thrombosis, and risk is further increased with a personal or family history of thrombosis or thrombophilia. Screening for thrombophilia is not recommended for the general population; however, testing for inherited or acquired thrombophilic conditions is recommended when personal or family history suggests increased risk. Factor V Leiden and prothrombin G20210A mutation are the most common inherited thrombophilias, and antiphospholipid antibody syndrome is the most important acquired defect. Clinical symptoms of deep venous thrombosis may be subtle and difficult to distinguish from gestational edema. Venous compression (Doppler) ultrasonography is the diagnostic test of choice. Pulmonary embolism typically presents postpartum with dyspnea and tachypnea. Multidetector-row (spiral) computed tomography is the test of choice for pulmonary embolism. Warfarin is contraindicated during pregnancy, but is safe to use postpartum and is compatible with breastfeeding. Low-molecular-weight heparin has largely replaced unfractionated heparin for prophylaxis and treatment in pregnancy.


Is Unfractionated Heparin Equivalent to Low-Molecular-Weight Heparin for Venous Thromboembolism? - AFP Journal Club


Low-Molecular-Weight Heparin for Initial Treatment of Venous Thromboembolism - Cochrane for Clinicians


Acute Respiratory Distress Syndrome: Diagnosis and Management - Article

ABSTRACT: Acute respiratory distress syndrome manifests as rapidly progressive dyspnea, tachypnea, and hypoxemia. Diagnostic criteria include acute onset, profound hypoxemia, bilateral pulmonary infiltrates, and the absence of left atrial hypertension. Acute respiratory distress syndrome is believed to occur when a pulmonary or extrapulmonary insult causes the release of inflammatory mediators, promoting neutrophil accumulation in the microcirculation of the lung. Neutrophils damage the vascular endothelium and alveolar epithelium, leading to pulmonary edema, hyaline membrane formation, decreased lung compliance, and difficult air exchange. Most cases of acute respiratory distress syndrome are associated with pneumonia or sepsis. It is estimated that 7.1 percent of all patients admitted to an intensive care unit and 16.1 percent of all patients on mechanical ventilation develop acute lung injury or acute respiratory distress syndrome. In-hospital mortality related to these conditions is between 34 and 55 percent, and most deaths are due to multiorgan failure. Acute respiratory distress syndrome often has to be differentiated from congestive heart failure, which usually has signs of fluid overload, and from pneumonia. Treatment of acute respiratory distress syndrome is supportive and includes mechanical ventilation, prophylaxis for stress ulcers and venous thromboembolism, nutritional support, and treatment of the underlying injury. Low tidal volume, high positive end-expiratory pressure, and conservative fluid therapy may improve outcomes. A spontaneous breathing trial is indicated as the patient improves and the underlying illness resolves. Patients who survive acute respiratory distress syndrome are at risk of diminished functional capacity, mental illness, and decreased quality of life; ongoing care by a primary care physician is beneficial for these patients.



Information From Industry