Items in AFP with MESH term: Pregnancy Outcome

Pages: Previous 1 2

Intensive Management of Gestational Diabetes - Cochrane for Clinicians


Effects of Discontinuing Epidurals in Late Labor - Cochrane for Clinicians


A Pregnant Patient with Dyspnea - Photo Quiz


Antiviral Agents for Pregnant Women with Genital Herpes - FPIN's Clinical Inquiries


Effects of Exercise on Pregnancy - Editorials


Intrauterine Growth Retardation - Article

ABSTRACT: Intrauterine growth retardation (IUGR), which is defined as less than 10 percent of predicted fetal weight for gestational age, may result in significant fetal morbidity and mortality if not properly diagnosed. The condition is most commonly caused by inadequate maternal-fetal circulation, with a resultant decrease in fetal growth. Less common causes include intrauterine infections such as cytomegalovirus and rubella, and congenital anomalies such as trisomy 21 and trisomy 18. When IUGR is recognized, it is important to attempt to correct reversible causes, although many of the conditions responsible for IUGR are not amenable to antenatal therapy. Close fetal surveillance with delivery before 38 weeks of gestation is usually recommended. Some infants born with IUGR have cognitive and medical problems, although for most infants the long-term prognosis is good.


Safety of Radiographic Imaging During Pregnancy - Article

ABSTRACT: Maternal illness during pregnancy is not uncommon and sometimes requires radiographic imaging for proper diagnosis and treatment. The patient and her physician may be concerned about potential harm to the fetus from radiation exposure. In reality, however, the risks to the developing fetus are quite small. The accepted cumulative dose of ionizing radiation during pregnancy is 5 rad, and no single diagnostic study exceeds this maximum. For example, the amount of exposure to the fetus from a two-view chest x-ray of the mother is only 0.00007 rad. The most sensitive time period for central nervous system teratogenesis is between 10 and 17 weeks of gestation. Nonurgent radiologic testing should be avoided during this time. Rare consequences of prenatal radiation exposure include a slight increase in the incidence of childhood leukemia and, possibly, a very small change in the frequency of genetic mutations. Such exposure is not an indication for pregnancy termination. Appropriate counseling of patients before radiologic studies are performed is critical.


Instruments for Assisted Vaginal Delivery - Cochrane for Clinicians


Common Questions About Late-Term and Postterm Pregnancy - Article

ABSTRACT: Pregnancy is considered late term from 41 weeks, 0 days’ to 41 weeks, 6 days’ gestation, and postterm at 42 weeks’ gestation. Early dating of the pregnancy is important for accurately determining when a pregnancy is late- or postterm, and first-trimester ultrasonography should be performed if clinical dating is uncertain. Optimal management of a low-risk, late-term pregnancy should consider maternal preference and balance the benefits and risks of induction vs. waiting for spontaneous labor. Compared with expectant management, induction at 41 weeks’ gestation is associated with a small absolute decrease in perinatal mortality and decreases in other fetal and maternal risks without an increased risk of cesarean delivery. Although there is no clear evidence that antenatal testing beginning at 41 weeks’ gestation prevents intrauterine fetal demise, it is often performed because the risks are low. When expectant management is chosen, most experts recommend beginning twice-weekly antenatal surveillance at 41 weeks with biophysical profile or nonstress testing plus amniotic fluid index (modified biophysical profile); induction may be deferred until 42 weeks if this surveillance is reassuring.


Pages: Previous 1 2


Information From Industry