Items in AFP with MESH term: Muscle, Skeletal

Trigger Points: Diagnosis and Management - Article

ABSTRACT: Trigger points are discrete, focal, hyperirritable spots located in a taut band of skeletal muscle. They produce pain locally and in a referred pattern and often accompany chronic musculoskeletal disorders. Acute trauma or repetitive microtrauma may lead to the development of stress on muscle fibers and the formation of trigger points. Patients may have regional, persistent pain resulting in a decreased range of motion in the affected muscles. These include muscles used to maintain body posture, such as those in the neck, shoulders, and pelvic girdle. Trigger points may also manifest as tension headache, tinnitus, temporomandibular joint pain, decreased range of motion in the legs, and low back pain. Palpation of a hypersensitive bundle or nodule of muscle fiber of harder than normal consistency is the physical finding typically associated with a trigger point. Palpation of the trigger point will elicit pain directly over the affected area and/or cause radiation of pain toward a zone of reference and a local twitch response. Various modalities, such as the Spray and Stretch technique, ultrasonography, manipulative therapy and injection, are used to inactivate trigger points. Trigger-point injection has been shown to be one of the most effective treatment modalities to inactivate trigger points and provide prompt relief of symptoms.


Evaluation of the Patient with Muscle Weakness - Article

ABSTRACT: Muscle weakness is a common complaint among patients presenting to family physicians. Diagnosis begins with a patient history distinguishing weakness from fatigue or asthenia, separate conditions with different etiologies that can coexist with, or be confused for, weakness. The pattern and severity of weakness, associated symptoms, medication use, and family history help the physician determine whether the cause of a patient's weakness is infectious, neurologic, endocrine, inflammatory, rheumatologic, genetic, metabolic, electrolyte-induced, or drug-induced. In the physical examination, the physician should objectively document the patient's loss of strength, conduct a neurologic survey, and search for patterns of weakness and extramuscular involvement. If a specific cause of weakness is suspected, the appropriate laboratory or radiologic studies should be performed. Otherwise, electromyography is indicated to confirm the presence of a myopathy or to evaluate for a neuropathy or a disease of the neuromuscular junction. If the diagnosis remains unclear, the examiner should pursue a tiered progression of laboratory studies. Physicians should begin with blood chemistries and a thyroid-stimulating hormone assay to evaluate for electrolyte and endocrine causes, then progress to creatine kinase level, erythrocyte sedimentation rate, and antinuclear antibody assays to evaluate for rheumatologic, inflammatory, genetic, and metabolic causes. Finally, many myopathies require a biopsy for diagnosis. Pathologic evaluation of the muscle tissue specimen focuses on histologic, histochemical, electron microscopic, biochemical, and genetic analyses; advances in technique have made a definitive diagnosis possible for many myopathies.


Diagnosis and Treatment of Biceps Tendinitis and Tendinosis - Article

ABSTRACT: Biceps tendinitis is inflammation of the tendon around the long head of the biceps muscle. Biceps tendinosis is caused by degeneration of the tendon from athletics requiring overhead motion or from the normal aging process. Inflammation of the biceps tendon in the bicipital groove, which is known as primary biceps tendinitis, occurs in 5 percent of patients with biceps tendinitis. Biceps tendinitis and tendinosis are commonly accompanied by rotator cuff tears or SLAP (superior labrum anterior to posterior) lesions. Patients with biceps tendinitis or tendinosis usually complain of a deep, throbbing ache in the anterior shoulder. Repetitive overhead motion of the arm initiates or exacerbates the symptoms. The most common isolated clinical finding in biceps tendinitis is bicipital groove point tenderness with the arm in 10 degrees of internal rotation. Local anesthetic injections into the biceps tendon sheath may be therapeutic and diagnostic. Ultrasonography is preferred for visualizing the overall tendon, whereas magnetic resonance imaging or computed tomography arthrography is preferred for visualizing the intra-articular tendon and related pathology. Conservative management of biceps tendinitis consists of rest, ice, oral analgesics, physical therapy, or corticosteroid injections into the biceps tendon sheath. Surgery should be considered if conservative measures fail after three months, or if there is severe damage to the biceps tendon.


Considerations for Safe Use of Statins: Liver Enzyme Abnormalities and Muscle Toxicitiy - Article

ABSTRACT: Statins play an important role in the care of patients with cardiovascular disease and have a good safety record in clinical practice. The risk of hepatic injury caused by statins is estimated to be about 1 percent, similar to that of patients taking a placebo. Patients with transaminase levels no more than three times the upper limit of normal can continue taking statins; often the elevations will resolve spontaneously. Coexisting elevations of transaminase levels from nonalcoholic fatty liver disease and stable hepatitis B and C viral infections are not contra- indications to statin use. Although myalgias are common with statin use, myositis and rhabdomyolysis are rare. When prescribed at one-half the recommended maximal dosage or less, statins are associated with an incidence of myopathy similar to that of placebo; therefore, rou- tine monitoring of creatine kinase levels in asymptomatic patients is not recommended. Myopathic symptoms usually resolve approximately two months after discontinuing the statin, and the same statin can be restarted at a lower dosage, or patients can try a different statin. Clinically important drugs that interact with statins and increase the risk of adverse effects include fibrates, diltiazem, verapamil, and amiodarone.



Information From Industry