Cochrane for Clinicians
Putting Evidence into Practice

Statins for Primary Cardiovascular Prevention

DEAN A. SEEHUSEN, MD, MPH, DeWitt Army Community Hospital, Fort Belvoir, Virginia

The Cochrane Abstract on the next page is a summary of a review from the Cochrane Library. It is accompanied by an interpretation that will help clinicians put evidence into practice. Dr. Seehusen presents a clinical scenario and question based on the Cochrane Abstract, followed by an evidence-based answer and a critique of the review. The practice recommendations in this activity are available at http://www.cochrane.org/reviews/en/ab004816.html.

Clinical Scenario
A 54-year-old man presents for a health maintenance visit. He has no significant medical history, has never smoked, and takes no medications. Other than a body mass index of 26 kg per m², his examination is unremarkable. He has no family history of cardiovascular disease (CVD). A recent lipid panel revealed a total cholesterol level of 256 mg per dL (6.63 mmol per L), a high-density lipoprotein level of 51 mg per dL (1.32 mmol per L), and a low-density lipoprotein level of 162 mg per dL (4.20 mmol per L). You consider starting him on a statin to lower his cholesterol level and wonder if it is likely to reduce his risk of a cardiovascular event.

Clinical Question
Do statins reduce cardiovascular events in persons without known coronary artery disease?

Evidence-Based Answer
Trials to date have found that statins reduce all-cause mortality, composite cardiovascular outcomes, and revascularization. However, most trials included large numbers of persons with known CVD. Clear evidence of the effectiveness of statins to prevent a first cardiovascular event is lacking. (Strength of Recommendation: B, based on inconsistent or limited-quality patient-oriented evidence.)

Practice Pointers
Statins are potent reducers of serum cholesterol levels. Their ability to reduce morbidity and mortality in patients with known CVD is well established. However, some authors have started to question the effectiveness of statins for the primary prevention of cardiovascular outcomes.¹ To examine this specific body of evidence, the authors of this Cochrane review chose studies in which no more than 10 percent of participants had a history of CVD. This criterion eliminated several large trials that showed reductions in cardiovascular outcomes.²

A total of 16 arms from 14 clinical trials were included in the analysis. Trials typically reported on composite endpoints that were at least partially industry supported. Clinical outcomes included all-cause mortality, composite cardiovascular event outcomes, and revascularization. Four of these trials were stopped early, which can overestimate treatment effects. Other weaknesses included poor reporting of randomization techniques in several studies, and evidence of incomplete or selective outcome reporting.

Eight trials including more than 28,000 participants reported mortality data. Pooled analysis favored statin use with a relative risk (RR) of 0.83 (95% confidence interval [CI], 0.73 to 0.95). Pooled analysis of nine trials showed a reduction in coronary heart disease events with statin use (RR = 0.72; 95% CI, 0.65 to 0.79). Pooled analysis of six trials showed a reduction in fatal and nonfatal CVD events with statin use (RR = 0.74; 95% CI, 0.66 to 0.85). Pooled analysis of seven trials showed that statin use reduced combined fatal and nonfatal stroke events (RR = 0.78; 95% CI, 0.65 to 0.94).

Three trials with a combined 17,452 participants reported composite fatal and nonfatal coronary heart disease, CVD, and stroke events. All three trials showed statistically significant reductions; pooled analysis revealed an RR of 0.70 (95% CI, 0.61 to 0.79). Of more than 18,000 participants in the five trials reporting on revascularization, 1.7 percent underwent percutaneous transluminal coronary angioplasty or coronary artery bypass grafting. Pooled analysis showed a statistically significant reduction in the statin groups (RR = 0.66; 95% CI, 0.53 to 0.83).
A population-based cohort study with more than 2 million participants found statin use to be statistically associated with moderate to severe liver dysfunction, moderate to serious myopathy, acute renal failure, and cataracts. However, adverse event reporting was irregular in the trials included in this analysis. Eight trials did not report on adverse events at all. Pooled data showed no difference between intervention and control groups for myalgia, rhabdomyolysis, or any types of cancer.

Published guidelines include near-term risk, calculated with validated scoring systems, as a factor to determine when to start lipid-lowering therapy. The National Cholesterol Education Program, Adult Treatment Panel III, guidelines and the American Heart Association Effectiveness-Based Guidelines for the Prevention of Cardiovascular Disease in Women use calculated risk as one factor to consider when starting lipid-lowering therapy. There is evidence that many patients who do not meet these criteria are being prescribed statins. One British study found that only 14 percent of patients being treated for primary prevention were considered at high risk of CVD using an established risk score.

Although this review does not prove that statins are ineffective for primary prevention of cardiovascular events, it highlights notable gaps in the literature concerning statin use in patients without a history of CVD. When determining whether to prescribe a statin to prevent a first cardiovascular event, a patient's overall cardiovascular risk should be estimated using a validated score, such as the Framingham risk score (calculator available at http://hp2010.nhlbihin.net/atpiii/calculator.asp). For those at highest risk, statins are likely to be beneficial. Because it is less certain whether patients at moderate or low risk will benefit from statin use, physicians should inform these patients of the gaps in the evidence, and assist them in weighing the potential cardiovascular benefits with the inconvenience, expense, and adverse effects of statins.

The views expressed in this article are those of the author and do not reflect the official policy or position of the U.S. government, Department of the Army, or the Department of Defense.

Address correspondence to Dean A. Seehusen, MD, MPH, at dseehusen@msn.com. Reprints are not available from the author.

Author disclosure: No relevant financial affiliations to disclose.

REFERENCES
Cochrane Briefs

Nicotine Receptor Partial Agonists for Smoking Cessation

Clinical Question

Does varenicline (Chantix) use improve smoking cessation rates, and how does its effectiveness and safety compare with other medications?

Evidence-Based Answer

Compared with placebo, varenicline more than doubles the chances of successful long-term smoking abstinence. In head-to-head trials, varenicline appears to be at least as effective as nicotine replacement therapy and bupropion (Zyban). The most common adverse effect is nausea, which decreases over time; a large cohort study found no increase in the likelihood of depression or suicidality. (Strength of Recommendation = A, based on consistent, good-quality patient-oriented evidence.)

Practice Pointers

The 2008 U.S. Public Health Service guideline on treating tobacco use and dependence recommended combining cessation counseling with nicotine replacement therapy, bupropion, and/or varenicline for nonpregnant adult smokers. Varenicline is a nicotine receptor partial agonist that was highly effective and well-tolerated in initial trials that led to U.S. Food and Drug Administration (FDA) approval. However, postmarketing reports of depressed mood, agitation, and suicide attempts in patients using varenicline led the FDA to require a boxed warning in July 2009. In June 2011, the FDA also warned of a link between varenicline use and increased risk of myocardial infarction in smokers with cardiovascular disease.

In this Cochrane review, the authors searched multiple electronic databases for randomized controlled trials with a minimum follow-up period of six months that compared varenicline with placebo or other medications for smoking cessation. Fourteen trials were identified, containing more than 10,000 total participants. The pooled risk ratio (RR) for six-month smoking abstinence for varenicline versus placebo was 2.3 (95% confidence interval [CI], 2.0 to 2.7). In five head-to-head trials, varenicline was statistically more effective at one year than bupropion (RR = 1.5; 95% CI, 1.2 to 1.9) and as effective at six months as nicotine replacement therapy (RR = 1.1; 95% CI, 0.9 to 1.4). Although up to one-third of all patients taking varenicline initially reported mild to moderate nausea, only 1 to 8 percent discontinued the drug for this reason.

A cohort study of more than 80,000 adults in primary care practices in the United Kingdom found no association between varenicline use and depression, suicidal thoughts, or self-harm. Nonetheless, physicians should generally avoid prescribing varenicline for smokers with poorly controlled psychiatric disorders or a history of suicidality, and carefully weigh risks and benefits in smokers with known cardiovascular disease. If patients who use varenicline experience agitation or mood changes, they should be counseled to immediately report these conditions to their physician, discontinue the drug, and seek prompt medical evaluation.

KENNETH W. LIN, MD

Author disclosure: Dr. Lin is an Associate Editor of Essential Evidence, published by John Wiley & Sons, Inc., who also publish The Cochrane Library.


REFERENCES