Vitamin B$_{12}$ Deficiency: Recognition and Management

ROBERT C. LANGAN, MD, FAAFP, and ANDREW J. GOODBRED, MD, St. Luke’s Family Medicine Residency Program, Bethlehem, Pennsylvania

Vitamin B$_{12}$ deficiency is a common cause of megaloblastic anemia, various neuropsychiatric symptoms, and other clinical manifestations. Screening average-risk adults for vitamin B$_{12}$ deficiency is not recommended. Screening may be warranted in patients with one or more risk factors, such as gastric or small intestine resections, inflammatory bowel disease, use of metformin for more than four months, use of proton pump inhibitors or histamine H$_{2}$ blockers for more than 12 months, vegans or strict vegetarians, and adults older than 75 years. Initial laboratory assessment should include a complete blood count and serum vitamin B$_{12}$ level. Measurement of serum methylmalonic acid should be used to confirm deficiency in asymptomatic high-risk patients with low-normal levels of vitamin B$_{12}$.

Intramuscular therapy leads to more rapid improvement and should be considered in patients with severe deficiency or severe neurologic symptoms. Absorption rates improve with supplementation; therefore, patients older than 50 years and vegans or strict vegetarians should consume foods fortified with vitamin B$_{12}$ or take vitamin B$_{12}$ supplements. Patients who have had bariatric surgery should receive 1 mg of oral vitamin B$_{12}$ per day indefinitely. Use of vitamin B$_{12}$ in patients with elevated serum homocysteine levels and cardiovascular disease does not reduce the risk of myocardial infarction or stroke, or alter cognitive decline. (Am Fam Physician. 2017;96(6):384-389. Copyright © 2017 American Academy of Family Physicians.)
use of these medications should be periodically reassessed, particularly in patients with other risk factors for vitamin B₁₂ deficiency.⁸,⁹

Manifestations

Vitamin B₁₂ deficiency affects multiple systems, and sequelae vary in severity from mild fatigue to severe neurologic impairment.¹,²,⁶,¹⁰ (Table 2⁴,¹⁰). The substantial hepatic storage of vitamin B₁₂ can delay clinical manifestations for up to 10 years after the onset of deficiency.¹¹ Bone marrow suppression is common and potentially affects all cell lines, with megaloblastic anemia being most common.¹,²,⁶ The resultant abnormal erythropoiesis can trigger other notable abnormal laboratory findings, such as decreased haptoglobin levels, high lactate dehydrogenase levels, and elevated reticulocyte count.¹,²,⁶ Symptoms typically include being easily fatigued with exertion, palpitations, and skin pallor.¹,²,⁶ Skin hyperpigmentation, glossitis, and infertility have also been reported.¹,²,⁶ Neurologic manifestations are caused by progressive demyelination and can include peripheral neuropathy, areflexia, and the loss of proprioception and vibratory sense. Areflexia can be permanent if neuronal death occurs in the posterior and lateral spinal cord tracts.¹,²,⁶,¹² Dementia-like disease, including episodes of psychosis, is possible with more severe and chronic deficiency.¹,¹² Clinical evaluation seems to show an inverse relationship between the severity of megaloblastic anemia and the degree of neurologic impairment.²

Maternal vitamin B₁₂ deficiency during pregnancy or while breastfeeding may lead to neural tube defects, developmental delay, failure to thrive, hypotonia, ataxia, and anemia.⁴,¹³-¹⁶ Women at high risk or with known deficiency should supplement with vitamin B₁₂ during pregnancy or while breastfeeding.⁴,¹⁴-¹⁶

Screening and Diagnosis

Screening persons at average risk of vitamin B₁₂ deficiency is not recommended.¹⁷ Screening should be considered in patients
with risk factors, and diagnostic testing should be considered in those with suspected clinical manifestations.1,2,6,18

The recommended laboratory evaluation for patients with suspected vitamin B\textsubscript{12} deficiency includes a complete blood count and serum vitamin B\textsubscript{12} level.2,19-21 A level of less than 150 pg per mL (111 pmol per L) is diagnostic for deficiency.1,2 Serum vitamin B\textsubscript{12} levels may be artificially elevated in patients with alcoholism, liver disease, or cancer because of decreased hepatic clearance of transport proteins and resultant higher circulating levels of vitamin B\textsubscript{12}; physicians should use caution when interpreting laboratory results in these patients.22,23

In patients with a normal or low-normal serum vitamin B\textsubscript{12} level, complete blood count results demonstrating macrocytosis, or suspected clinical manifestations, a serum methylmalonic acid level is an appropriate next step1,2,6,18 and is a more direct measure of vitamin B\textsubscript{12}’s physiologic activity.1,2 Although not clinically validated or available for widespread use, measurement of holotranscobalamin, the metabolically active form of vitamin B\textsubscript{12}, is an emerging method of detecting deficiency.1,2,18 Table 3 lists the relative sensitivities and specificities of various laboratory tests.24

Pernicious anemia refers to one of the hematologic manifestations of chronic autoimmune gastritis, in which the immune system targets the parietal cells of the stomach or intrinsic factor itself, leading to decreased
absorption of vitamin B₁₂. Asymptomatic autoimmune gastritis likely precedes gastric atrophy by 10 to 20 years, followed by the onset of iron-deficiency anemia that occurs as early as 20 years before vitamin B₁₂ deficiency pernicious anemia.

Patients diagnosed with vitamin B₁₂ deficiency whose history and physical examination do not suggest an obvious dietary or malabsorptive etiology should be tested for pernicious anemia with anti-intrinsic factor antibodies (positive predictive value = 95%), particularly if other autoimmune disorders are present. Patients with pernicious anemia may have hematologic findings consistent with normocytic anemia. If anti-intrinsic factor results are negative but suspicion for pernicious anemia remains, an elevated serum gastrin level is consistent with the diagnosis. The Schilling test, which was once the diagnostic standard for pernicious anemia, is no longer available in the United States. Figure 2 presents an approach to diagnosing vitamin B₁₂ deficiency and pernicious anemia.

Treatment
Vitamin B₁₂ deficiency can be treated with intramuscular injections of cyanocobalamin or oral vitamin B₁₂ therapy. Approximately 10% of the standard injectable dose of 1 mg is absorbed, which allows for rapid replacement in patients with severe deficiency or severe neurologic symptoms. Guidelines from the British Society for Haematology recommend injections three times per week for two weeks in patients without neurologic deficits. If neurologic deficits are present, injections should be given every other day for up to three weeks or until no further improvement is noted. Table 4 lists the usual times until improvement for abnormalities associated with vitamin B₁₂ deficiency. In general, patients with an irreversible cause should be treated indefinitely, whereas those with a reversible cause should be treated until the deficiency is corrected and symptoms resolve. If vitamin B₁₂ deficiency coexists with folate deficiency, vitamin B₁₂ should be replaced first to prevent subacute combined degeneration of the spinal cord. The British Society for Haematology does not recommend retesting vitamin B₁₂ levels after treatment has been initiated, and no guidelines address the optimal interval for screening high-risk patients.

A 2005 Cochrane review involving 108 patients with vitamin B₁₂ deficiency found that high-dose oral replacement (1 mg to 2 mg per day) was as effective as parenteral administration for correcting anemia and
Table 4. Time to Improvement of Abnormalities in Vitamin B₁₂ Deficiency After Initiation of Treatment

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Expected time until improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homocysteine or methylmalonic acid level, or reticulocyte count</td>
<td>One week</td>
</tr>
<tr>
<td>Neurologic symptoms</td>
<td>Six weeks to three months</td>
</tr>
<tr>
<td>Anemia, leukopenia, mean corpuscular volume, or thrombocytopenia</td>
<td>Eight weeks</td>
</tr>
</tbody>
</table>

Information from reference 27.

SORT: KEY RECOMMENDATIONS FOR PRACTICE

<table>
<thead>
<tr>
<th>Clinical recommendation</th>
<th>Evidence rating</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with risk factors for vitamin B<sub>12</sub> deficiency should be screened with a complete blood count and serum vitamin B<sub>12</sub> level.</td>
<td>C</td>
<td>18</td>
</tr>
<tr>
<td>A serum methylmalonic acid level may be used to confirm vitamin B<sub>12</sub> deficiency when it is suspected but the serum vitamin B<sub>12</sub> level is normal or low-normal.</td>
<td>C</td>
<td>18</td>
</tr>
<tr>
<td>Oral and injectable vitamin B<sub>12</sub> are effective means of replacement, but injectable therapy leads to more rapid improvement and should be considered in patients with severe deficiency or severe neurologic symptoms.</td>
<td>B</td>
<td>18</td>
</tr>
<tr>
<td>Patients who have had bariatric surgery should receive 1 mg of oral vitamin B<sub>12</sub> per day indefinitely.</td>
<td>C</td>
<td>31</td>
</tr>
</tbody>
</table>

A = consistent, good-quality patient-oriented evidence; B = inconsistent or limited-quality patient-oriented evidence; C = consensus, disease-oriented evidence, usual practice, expert opinion, or case series. For information about the SORT evidence rating system, go to http://www.aafp.org/afpsort.

Consider screening patients for vitamin B₁₂ deficiency if they have been taking proton pump inhibitors or H₂ blockers for more than 12 months, or metformin for more than four months. The average intake of vitamin B₁₂ in the United States is 3.4 mcg per day, and the recommended dietary allowance is 2.4 mcg per day for adult men and nonpregnant women, and 2.6 mcg per day for pregnant women. Patients older than 50 years may not be able to adequately absorb dietary vitamin B₁₂ and should consume food fortified with vitamin B₁₂. Vegans and strict vegetarians should be counseled to consume fortified cereals or supplements to prevent deficiency. The American Society for Metabolic and Bariatric Surgery recommends that patients who have had bariatric surgery take 1 mg of oral vitamin B₁₂ per day indefinitely.

Vitamin B₁₂ and Hyperhomocysteinemia

Vitamin B₁₂ deficiency is a much more common cause of hyperhomocysteinemia in developed countries than folate deficiency because of widespread fortification of food with folate. Although epidemiologic studies have shown an association between vascular disease and hyperhomocysteinemia, large randomized controlled trials have shown that lowering homocysteine levels in these patients does not reduce the number of myocardial infarctions or strokes, or improve mortality rates. Similarly, an association between elevated homocysteine levels and cognitive impairment has been noted, but subsequent vitamin B₁₂ replacement does not have preventive or therapeutic benefit.

This article updates previous articles on this topic by Langan and Zawistoski, and by Oh and Brown.

Data Sources: A PubMed search was completed in Clinical Queries using the key terms vitamin B₁₂, cobalamin, deficiency, and treatment. The search included meta-analyses, randomized controlled trials, clinical trials, and reviews. Also searched were the Agency for Healthcare Research and Quality evidence reports, Clinical Evidence, the Cochrane database, Essential Evidence, the Institute for Clinical Systems Improvement, the National Guideline Clearinghouse database, and the U.S. Preventive Services Task Force. Search dates: March 1, 2016; October 20, 2016; and June 9, 2017.

Prevention

Because of potential interactions from prolonged medication use, physicians should...
The Authors

ROBERT C. LANGAN, MD, FFAFP, is the program director at St. Luke’s Family Medicine Residency Program, Bethlehem, Pa., and an adjunct associate professor in the Department of Family and Community Medicine at Temple University School of Medicine, Philadelphia, Pa.

ANDREW J. GOODBRED, MD, is a faculty member at St. Luke’s Family Medicine Residency Program and an adjunct assistant professor in the Department of Family and Community Medicine at Temple University School of Medicine.

Address correspondence to Robert C. Langan, MD, St. Luke’s Hospital, 2830 Easton Ave., Bethlehem, PA 18017 (e-mail: robert.langan@sluhn.org). Reprints are not available from the authors.

REFERENCES