

Medicine by the Numbers

A Collaboration of TheNNT.com and AFP

► Vitamin D Supplementation and All-Cause Mortality

Bruce M. LeClair, MD, MPH; Celine Si, MD; and Jontu Solomon, MD

Details for This Review

Study Population: Adults taking vitamin D supplements

Efficacy End Points: Decrease in all-cause mortality, cancer mortality, or cardiovascular mortality

Harm End Points: None

Narrative: Vitamin D supplementation has been a topic of debate for many years. Vitamin D is essential to skeletal health and may also have other extraskeletal benefits. Observational studies have shown that those with low vitamin D levels have higher cancer and cardiovascular mortality. There is ongoing research to determine if vitamin D plays a role in decreasing all-cause mortality. Previous systematic reviews and meta-analyses have shown that oral vitamin D therapy was associated with small decreases in all-cause mortality. Recent trials with double the number of participants have shown no benefit of vitamin D supplementation on mortality.

This meta-analysis reviewed the effectiveness of vitamin D to reduce all-cause mortality, cancer mortality, cardiovascular mortality, noncancer or noncardiovascular mortality, cerebrovascular mortality, and ischemic heart disease mortality.¹ It included 52 randomized controlled trials published before December 26, 2018 with a total of 75,454 participants. Intention-to-treat analysis was conducted to evaluate outcomes. Subgroup analyses were performed for dose (at least 2,000 IU per day and less than 2,000 IU per day), type of vitamin D (vitamin D₂ and vitamin D₃), timing of treatment (daily and intermittent), baseline serum 25-hydroxyvitamin D level (at least 20 ng per mL [49.92 nmol per L] and less than 20 ng per mL), and mean age at least 70 years and younger than 70 years). Retrospective subgroup analyses were also performed based on length of follow-up (at least three years and less

VITAMIN D SUPPLEMENTATION EFFECT ON ALL-CAUSE MORTALITY

Benefits	Harms
1 in 274 did not die from cancer over a period of 1.2 years	Not evaluated
No deaths from all causes were prevented	
No cardiovascular deaths were prevented	

than three years), year of publication (before 2014 or in/after 2014), sex (female and both sexes), residential status (community and institution), bolus (yes and no), intervention (vitamin D and vitamin D with calcium), and latitude (at least 40 degrees and less than 40 degrees).

For the primary outcome of all-cause mortality, there was no statistically significant difference between the vitamin D supplementation group and the control group (risk ratio = 0.98; 95% CI, 0.95 to 1.02). Several analyses showed a lack of publication bias or small group effect.

For the secondary outcomes of other mortality, the study found that vitamin D supplementation was associated with significant reduction in risk of cancer mortality (risk ratio = 0.84; 95% CI, 0.74 to 0.95; absolute risk reduction = 0.004; number needed to treat = 250). The study found no significant difference between groups in cardiovascular

The NNT Group Rating System

Green	Benefits greater than harms
Yellow	Unclear benefits
Red	No benefits
Black	Harms greater than benefits

mortality, noncancer or noncardiovascular mortality, cerebrovascular mortality, or ischemic heart mortality.

Caveats: Vitamin D₂ and vitamin D₃ have differing effects in raising 25-hydroxyvitamin D levels. Most intervention trials comparing both have shown that vitamin D₃ increased 25-hydroxyvitamin D levels more efficiently. Subgroup analyses found that all-cause mortality was significantly lower with vitamin D₃ supplementation than vitamin D₂ (*P* for interaction = .04). Similarly, vitamin D₃ also reduced the risk of cancer mortality, but vitamin D₂ did not (*P* for interaction = .11). Because subgroup analyses are observational by nature and not randomized comparisons, this effect on all-cause mortality requires additional evidence gathered by future large randomized controlled trials.

According to subgroup analysis, all-cause mortality was significantly lower in trials with longer follow-up (more than three years). Therefore, the

length of vitamin D supplementation could affect the results on all-cause mortality.

In summary, high-quality evidence suggests that vitamin D supplementation does not decrease all-cause mortality, cardiovascular mortality, ischemic heart disease mortality, noncancer or noncardiovascular mortality, but it does decrease the risk of cancer mortality (number needed to treat = 274 for 1.2 years).

Copyright © 2020 MD Aware, LLC (theNNT.com). Used with permission.

This series is coordinated by Dean A. Seehusen, MD, MPH, AFP assistant medical editor, and Daniel Runde, MD, from the NNT Group.

A collection of Medicine by the Numbers published in AFP is available at <https://www.aafp.org/afp/mbtn>.

Author disclosure: No relevant financial affiliations.

Reference

1. Zhang Y, Fang F, Tang J, et al. Association between vitamin D supplementation and mortality: systematic review and meta-analysis. *BMJ*. 2019;366:i4673. ■