Acute Respiratory Distress Syndrome

CPT Megan Mahowald, MD

ACTIVITY DISCLAIMER

The material presented here is being made available by the American Academy of Family Physicians for educational purposes only. Please note that medical information is constantly changing; the information contained in this activity was accurate at the time of publication. This material is not intended to represent the only, nor necessarily best, methods or procedures appropriate for the medical situations discussed. Rather, it is intended to present an approach, view, statement, or opinion of the faculty, which may be helpful to others who face similar situations.

The AAFP disclaims any and all liability for injury or other damages resulting to any individual using this material and for all claims that might arise out of the use of the techniques demonstrated therein by such individuals, whether these claims shall be asserted by a physician or any other person. Physicians may care to check specific details such as drug doses and contraindications, etc., in standard sources prior to clinical application. This material might contain recommendations/guidelines developed by other organizations. Please note that although these guidelines might be included, this does not necessarily imply the endorsement by the AAFP.
DISCLOSURE

It is the policy of the AAFP that all individuals in a position to control content disclose any relationships with commercial interests upon nomination/invitation of participation. Disclosure documents are reviewed for potential conflict of interest (COI), and if identified, conflicts are resolved prior to confirmation of participation. Only those participants who had no conflict of interest or who agreed to an identified resolution process prior to their participation were involved in this CME activity.

All individuals in a position to control content for this session have indicated they have no relevant financial relationships to disclose.

The content of my material/presentation in this CME activity will not include discussion of unapproved or investigational uses of products or devices.

CPT Megan Mahowald, MD

Physician/Hospital Medicine Fellow, Department of Family Medicine, Womack Army Medical Center (WAMC), Fort Bragg, North Carolina

Dr. Mahowald is a Captain in the U.S. Army. She earned her medical degree from the Uniformed Services University of the Health Sciences in Bethesda, Maryland, and completed a family medicine residency at Madigan Army Medical Center in Tacoma, Washington. She is a second-year hospital medicine fellow at WAMC. She earned a master’s degree in education and continues to pursue her dual interest in medicine and education by creating, implementing, and improving the inpatient medicine curricula for the WAMC Family Medicine Residency Program and the hospital medicine fellowship program.
Learning Objectives

1. Conduct a differential diagnosis of ARDS in symptomatic patients.
2. Diagnose ARDS, utilizing current evidence-based criteria.
3. Describe evidence base treatments for ARDS to include lung-protective measures.
4. Develop collaborative care plans for ARDS survivors that offer supportive care, promoting optimal health and function.

Audience Engagement System
Outline:

• Epidemiology and history
• Definition and diagnostic criteria
• Clinical presentation and work-up
• Management
• Prevention
• Post-ARDS Survivors

“Edema of the lungs, with general asphyxia. Livid cyanosis with great dyspnea is the outstanding feature....A yellow serous fluid fills the air passages in such quantifies that it may drip from the mouth of the living patient when the stretcher is tilted head downwards.”

c. 1915
AES Question 1:
Which of the following is true about acute respiratory distress syndrome (ARDS)?

A. Estimated 40% in-hospital mortality
B. Under-recognized condition with up to 40% of cases undiagnosed
C. Most common cause of death during the 2009 H1N1 pandemic
D. <50% of survivors return to work 12 months after discharge
E. All of the above

Epidemiology and Disease Burden:

- Represents about 10% of total ICU admissions
- Significant geographical variation
- **Under-recognized and under-treated**
- 40% in-hospital mortality
- High rates of cognitive dysfunction, prolonged psychiatric morbidity, and critical illness polyneuropathy in survivors
Case One:

45 year-old male presenting to the ER complaining of fever, sore throat, and dry cough for the three days and progressive shortness of breath for 1 day.

His medical history is only notable for allergic rhinitis.

In triage, he is in obvious respiratory distress with peripheral cyanosis.

Triage Vitals:

T 38°C, HR 120, BP 90/60 (M 70), RR 36, SpO2 54% on RA
Case One:

His respiratory distress and hypoxia persists despite supplemental oxygen with 15L non-rebreather mask. He is intubated in the ER.

His ventilator settings are:
PRVC Tv: 450 Rate: 24 PEEP 5 FiO₂ 80%

ABG (30 minutes after intubation):
pH 7.30 PaCO₂ 55 PaO₂ 80

POCUS: hyperdynamic left ventricle

AES Question 2:

Vent: PRVC Tv: 450 Rate: 24 PEEP 5 FiO₂ 80%

ABG (30 minutes after intubation):
pH 7.30 PaCO₂ 55 PaO₂ 80

POCUS: hyperdynamic LV

Does he have ARDS?
A. Yes
B. No
C. Not enough information
Acute Respiratory Distress Syndrome (ARDS)

“The clinical pattern...includes severe dyspnoea, tachypnoea, cyanosis that is refractory to oxygen therapy, loss of lung compliance, and a diffuse alveolar infiltrate seen on chest X-ray.”

Acute Respiratory Distress in Adults
Ashbaugh et al. 1967

Berlin Definition

• Onset within 7 days of a known clinical insult or new or worsening respiratory symptoms
• Respiratory failure cannot fully be explained by cardiac failure or fluid overload
• Bilateral opacities consistent with pulmonary edema on chest x-ray or chest CT
• Minimum PEEP setting or CPAP, 5 cm of water
Berlin Definition

Categorization of severity:

<table>
<thead>
<tr>
<th>Severity</th>
<th>PaO₂:FiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>201-300 mm Hg</td>
</tr>
<tr>
<td>Moderate</td>
<td>101-200 mm Hg</td>
</tr>
<tr>
<td>Severe</td>
<td>≤ 100 mm Hg</td>
</tr>
</tbody>
</table>

Risk Factors:

Direct Lung Injury:
- Pneumonia*
- Aspiration*
- Pulmonary contusion
- Inhalation injury
- Near-drowning
Risk Factors:

<table>
<thead>
<tr>
<th>Direct Lung Injury</th>
<th>Indirect Lung Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pneumonia*</td>
<td>• Sepsis (non-pulmonary)*</td>
</tr>
<tr>
<td>• Aspiration*</td>
<td>• Non-thoracic trauma/Hemorrhagic shock</td>
</tr>
<tr>
<td>• Pulmonary contusion</td>
<td>• Pancreatitis</td>
</tr>
<tr>
<td>• Inhalation injury</td>
<td>• Major burn injury</td>
</tr>
<tr>
<td>• Near-drowning</td>
<td>• Drug overdose</td>
</tr>
<tr>
<td></td>
<td>• Transfusion of blood products</td>
</tr>
</tbody>
</table>

Clinical Presentation: *History and Physical*

- Usually occurs within 6-72 hours of inciting event
- Complaint: Dyspnea
- Acute distress, tachypneic with diffuse crackles on lung exam, use of accessory muscles
Clinical Presentation: Labs

- ABG – hypoxemia with acute respiratory alkalosis

Clinical Presentation: Imaging

Case courtesy of Dr. Alexandra Stanislavsky, Radiopaedia.org, rID: 16868

Case courtesy of Dr. Sajoscha Sorrentino, Radiopaedia.org, rID: 16290

Image courtesy of Copetti et al. https://doi.org/10.1186/1476-7120-6-16
Differential:

- Congestive heart failure
- Interstitial lung diseases
- Connective-tissue diseases
- Diffuse alveolar hemorrhage
- Sympathetic crashing acute pulmonary edema (SCAPE)
- Drug-induced lung disease
- Cancer
- Endobronchial tuberculosis
- Hemophagocytic lymphohistiocytosis

AES Question 3:
The patient is brought up to the ICU. His rapid viral panel is positive for H1N1. His labs are otherwise unremarkable.

Which of the following is an appropriate ventilatory management strategy for this patient?

A. Limit tidal volumes to 4-8 cc/kg of ideal body weight
B. Limit tidal volumes to 4-8 cc/kg of actual body weight
C. Allow patient to pull whatever tidal volumes he needs with a pressure support mode of ventilation
D. Start with low tidal volumes (4-8 cc/kg), but allow volumes up to 15 cc/kg if required to prevent double-triggering
Management of ARDS

Pathophysiology

Pathophysiology

<table>
<thead>
<tr>
<th>Phase</th>
<th>Duration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exudative Phase</td>
<td>7-10 days</td>
<td>Lung’s initial response to injury</td>
</tr>
<tr>
<td>Proliferative Phase</td>
<td>2-3 weeks?</td>
<td>Repair process with resolution of pulmonary edema</td>
</tr>
<tr>
<td>Fibrotic Phase</td>
<td></td>
<td>Chronic Obliteration of normal lung architecture</td>
</tr>
</tbody>
</table>

Management of ARDS:

- Treat the underlying cause
- **Supportive care**
 - Manage hypoxia
 - Prevent further tissue damage
- Evaluate need for higher level of care
Management of ARDS:

- Treat the underlying cause
- **Supportive care**
 - Manage hypoxia
 - Prevent further tissue damage
- Evaluate need for higher level of care

No pharmacologic therapy exists for treatment of ARDS

Fundamentals of Management:

Oxygenation Goals:
- Target Pao₂ 55-80 or SpO₂ 88-95%
- Use the *lowest* FiO₂ possible to maintain adequate oxygenation

Carbon Dioxide Goals:
- Allow for permissive hypercapnia and permissive respiratory acidosis
 - Paco₂ <50 mmHg and/or pH ≥ 7.20 if tolerated
Management of ARDS:

Strategies that improve outcomes

Low Tidal Volume

Recommendation:
- Adult patients with ARDS should receive mechanical ventilation with strategies that limit tidal volumes (4-8 cc/kg IBW) and inspiratory pressures ($P_{\text{plat}} < 30 \text{ cm H}_2\text{O}$). [SOR A/LOE 1]

Patient-Oriented Outcome:
- Reduction in mortality

Evidence: ARDSNet Group
Low Tidal Volume

Recommendation:
- Adult patients with ARDS should receive mechanical ventilation with strategies that limit tidal volumes (4-8 cc/kg IBW) and inspiratory pressures ($P_{plat} < 30$ cm H$_2$O). [SOR A/LOE 1]

Patient-Oriented Outcome:
- Reduction in mortality

Evidence: ARDSNet Group

High PEEP

Recommendation:
- Adults with moderate-to-severe ARDS receive higher rather than lower levels of PEEP. [SOR C/LOE 2]

Patient-Oriented Outcome:
- Shortened duration of mechanical ventilation

Evidence: ALVEOLI trial, LOV trial, ExPRESS trial
Prone Positioning

Recommendation:
• Adult patients with severe ARDS should receive prone positioning for \(\geq 12 \) hours per day. [SRA/LOE 2]

Patient-Oriented Outcome:
• Reduction in mortality

Evidence: PROSEVA trial
Conservative Fluid Management

Recommendation:
• A conservative fluid-management strategy is recommended [SOR C/LOE 2]

Patient-Oriented Outcome:
• Shortened duration of mechanical ventilation

Evidence: FACTT trial

AES Question 4:
The patient has been in the ICU for 12 hours. He continues to have severe hypoxia (PaO2:FiO2 <100) despite prone positioning and high PEEP. He is frequently dyssynchronous with the ventilator.

Which of the following is an appropriate next step in management?
A. Call regional ECMO center for evaluation for ECMO cannulation
B. Consider neuromuscular blockade to improve ventilator synchrony
C. Change to APRV/BiLevel/Bi-Vent ventilation mode
D. Try regular recruitment maneuvers followed by decremental PEEP trial
E. Any of the above
Management of ARDS:

Strategies that *might* improve outcomes

- Neuromuscular blockage
- BiVent/APRV/Bi-Level
- Open Lung Ventilation
- Extracorporeal Membrane Oxygenation (ECMO)
Neuromuscular Blockade:

Concept:
Lung-protective ventilation is paramount in management of ARDS. Patient-ventilator dyssynchrony can lead to breath stacking which increases the risk for ventilator-induced lung injury and barotrauma. Muscle paralysis eliminates ventilator dyssynchrony and minimizes muscle oxygen consumption.

Evidence:
ACURASYS Trial (2010): improved 90-day mortality in cisatracurium arm
ROSE Trial (2019): Stopped early for futility. No difference in mortality.

BiLevel/APRV/Bi-Vent:

Concept:
Continuous positive airway pressure with brief expiratory intervals. Increased airway pressure contributes to lung recruitment. This *spontaneous* mode of ventilation improves ventilator synchrony and decreases need for sedation/paralysis.

Evidence:
Bi-Level-APRV Trial (2017): better oxygenation, less sedation, fewer days of mechanical ventilation, shorter ICU stay
Open Lung Ventilation:

Concept:
Recruitment maneuvers (RM) transiently increase transpulmonary pressure in an attempt to open previously collapsed alveoli.

Evidence:
- **Open Lung Approach for ARDS (2016):**
 - Improved oxygenation with no adverse effects
- **ART trial (2017):**
 - Increased mortality with RM and high PEEP

Extracorporeal Membrane Oxygenation (ECMO):

Concept:
- Venovenous ECMO provides oxygenation and carbon dioxide removal, allowing for lung rest and reduction in ventilator-induced lung injury
- Murray Score for ECMO referral

Evidence:
- **CESAR Trial (2009):** Absolute mortality reduction in ECMO arm
- **EOLIA (2018):** Stopped early for futility. No change in mortality.
Management of ARDS:

What does NOT work

- High frequency oscillatory ventilation
- Surfactant replacement
- Neutrophil elastase inhibition
- Systemic anticoagulation
- Ketoconazole
- Lisofylline
- Activated protein C
- Statins
- B₂-agonists
- Antioxidants
- Aspirin
- Steroids (controversial)
- Inhaled vasodilators
- N-acetyl-cysteine
Recognize ARDS in a patient with acute respiratory distress/failure (Berlin Criteria)

Treat underlying cause (if possible)

Utilize lung protective ventilation with low TV/High PEEP (TV 4-8 cc/kg IBW)

Restrictive fluid approach
Dry lungs = happy lungs

Early referral to higher level of care

Consider neuromuscular blockade prior to transport if severe ventilator dyssynchrony and persistent hypoxia
Prevention of ARDS

AES Question 5:

Which of the following is likely an effective strategy for primary prevention of ARDS?

A. Administration of pneumococcal and seasonal influenza vaccines
B. Administration of aspirin to all hospitalized patients
C. Encouraging hospitalized patients to lay flat while sleeping
D. Institution of daily lung injury prevention checklist for all mechanically ventilated patients
Prevention:

1° Prevention
- Vaccinations for prevention of influenza and pneumococcal pneumonia
- Aspiration precautions in hospitalized patients

2° Prevention – Identifying At-Risk Patients
- Lung Injury Prevention Score (LIPS)
- Early Acute Lung Injury score (EALI)
- Surgical Lung Injury Prediction (SLIP)
- Biomarkers (theoretical)

Prevention:

2° Prevention – Limiting Iatrogenic Injury in At-Risk Patients
- Goal to mitigate “second hit”
- Restrictive transfusion practice, timely treatment of sepsis, lung-protective mechanical ventilation, fluid-conservative resuscitation, prevention of new aspiration events
- Creation of institutional “Best Practices Bundles”
ARDS Survivors

Post-hospitalization:

<table>
<thead>
<tr>
<th>Pulmonary Function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Most return to normal or near-normal physiology and function</td>
</tr>
<tr>
<td>• Pulmonary function testing may have a persistent, mild diffusion defect</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Impairments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Critical illness polyneuropathy, critical illness myopathy, entrapment neuropathy, contractures, tracheal stenosis, heterotopic ossification, tooth loss, scars from invasive procedures</td>
</tr>
</tbody>
</table>
Post-hospitalization:

Cognitive Impairments:
- Affects a wide variety of cognitive domains including attention, visual-spatial abilities, declarative memory, and executive function
- Impairments persist > 5 years in 20% of patients

Mood disturbances:
- 2/3 of patients will have substantial symptoms
- Over half of survivors have prolonged psychiatric morbidity (>12 months)

Caregiver and Family Burden:

- 57% of ICU survivors who receive long-term mechanical ventilation still require assistance of a family caregiver *one year* after their critical illness
- Many caregivers suffer from anxiety, depression, and/or PTSD
- Caregiver burnout may compromise rehabilitation of survivors
- Preliminary programs to train and educate family members are currently being developed
ARDS is common condition, but is under-diagnosed and under-treated

- Consider ARDS in any patient with hypoxic respiratory failure and bilateral pulmonary infiltrates

- Patients with ARDS should receive mechanical ventilation with strategies that limit tidal volumes (4-8 cc/kg IBW) and inspiratory pressures (SOR A/LOE 1)

- Consider using high PEEP strategies for patients with moderate or severe ARDS (SOR B/LOE 3)

ARDS is common condition, but is under-diagnosed and under-treated

- Adult patients with severe ARDS should receive prone positioning for ≥ 12 hours per day. [SOR A/LOE 2]

- Pneumococcal and seasonal influenza vaccinations are the primary form of primary prevention for ARDS (SOR C/LOE 3)

- Patients who survive ARDS are at high risk for physical, cognitive, and psychologic disturbances that may persist for years after discharge. Recognition, evaluation, and appropriate management may improve long-term outcomes and quality of life (SOR C/LOE 3)
Questions

Resources:

Resources:

12. Zhou et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in ARDS. Intensive Care Medicine 2017

Contact Information

Megan Mahowald, MD
Email: megan.b.mahowald.mil@mail.mil