Pneumonia: Breathe Again!

COL Aaron Saguil, MD, MPH, FAAFP
Robert Oh, MD, MPH, CAQSM, FAAFP

ACTIVITY DISCLAIMER

The material presented here is being made available by the American Academy of Family Physicians for educational purposes only. Please note that medical information is constantly changing; the information contained in this activity was accurate at the time of publication. This material is not intended to represent the only, nor necessarily best, methods or procedures appropriate for the medical situations discussed. Rather, it is intended to present an approach, view, statement, or opinion of the faculty, which may be helpful to others who face similar situations.

The AAFP disclaims any and all liability for injury or other damages resulting to any individual using this material and for all claims that might arise out of the use of the techniques demonstrated therein by such individuals, whether these claims shall be asserted by a physician or any other person. Physicians may care to check specific details such as drug doses and contraindications, etc., in standard sources prior to clinical application. This material might contain recommendations/guidelines developed by other organizations. Please note that although these guidelines might be included, this does not necessarily imply the endorsement by the AAFP.
DISCLOSURE

It is the policy of the AAFP that all individuals in a position to control content disclose any relationships with commercial interests upon nomination/invitation of participation. Disclosure documents are reviewed for potential conflict of interest (COI), and if identified, conflicts are resolved prior to confirmation of participation. Only those participants who had no conflict of interest or who agreed to an identified resolution process prior to their participation were involved in this CME activity.

All individuals in a position to control content for this session have indicated they have no relevant financial relationships to disclose.

The content of my material/presentation in this CME activity will not include discussion of unapproved or investigational uses of products or devices.

COL Aaron Saguil, MD, MPH, FAAFP

Associate Dean for Regional Medical Education, San Antonio/Associate Professor of Family Medicine, Uniformed Services University of the Health Sciences F. Edward Hébert School of Medicine, Bethesda, Maryland

Dr. Saguil is a colonel in the U.S. Army. In addition to his positions at “America’s Medical School,” the Uniformed Services University of the Health Sciences F. Edward Hébert School of Medicine, he also serves as vice president of the Uniformed Services Academy of Family Physicians, vice chair of the MCAT Validity Committee of the Association of American Medical Colleges (AAMC), and a contributing editor to American Family Physician. He is past chair of the AAFP’s Commission on Continuing Professional Development.

Dr. Saguil earned his Bachelor of Arts degree in chemistry from Duke University, Durham, North Carolina; his medical degree from the University of Florida College of Medicine in Gainesville; and his Master of Public Health degree (MPH) from the University of Washington in Seattle. He has deployed to Afghanistan and served as the Chief of Primary Care for the NATO Role 3 Multinational Medical Unit in Kandahar, Afghanistan. His actions in theater were recognized with the Bronze Star and the Canadian Chief of the Defence Staff Commendation.
Robert Oh, MD, MPH, CAQSM, FAAFP

Chief, Department of Family Medicine, Madigan Army Medical Center, Tacoma, Washington; Associate Professor of Family Medicine, Uniformed Services University, Bethesda, Maryland

Dr. Oh is a family physician who has a Certificate of Added Qualifications (CAQ) in sports medicine. He earned his medical degree from Boston University School of Medicine, Massachusetts, and completed a family medicine residency at DeWitt Army Community Hospital, Fort Belvoir, Virginia. Subsequently, he completed a faculty development fellowship at Madigan Army Medical Center in Tacoma, Washington, and earned his Master of Public Health (MPH) degree from University of Washington, Seattle. He has held leadership positions as associate program director, program director, and chief of the family medicine service at Tripler Family Medicine Residency Program, Honolulu, Hawaii. He has more than 20 years of clinical and teaching experience, as well as more than two years of operational experience deployed to Kosovo and Iraq. He can be found on #SoMe #MedTwitter @RobertOhMD and on his blog at http://robertohmd.wordpress.com(robertohmd.wordpress.com).

Learning Objectives

1. Monitor the health of patients who have weakened immune systems to mitigate risk factors that increase their risks of developing pneumonia.

2. Provide appropriate vaccines for prevention of pneumococcal pneumonia and influenza per current guidelines.

3. Prescribe appropriate empiric therapy for CAP based on suspected pathogen and local susceptibility patterns.

4. Identify risk factors for multidrug-pathogens in patients who have HAP or VAP.

5. Prescribe appropriate antibiotic therapy for HAP or VAP based on risk factors for multidrug-resistant pathogens, predominant pathogens in the clinical setting and local susceptibility patterns.
Audience Engagement System

Step 1

Step 2

Step 3

Agenda

- Community acquired pneumonia
- Hospital and ventilator acquired pneumonia
- Pneumococcal vaccinations

Featuring cases, questions, US and world history and more!

Image source: https://commons.wikimedia.org/wiki/File:Spanish_flu_hospital.png
Before we begin

If you do not have access to one of these on your phone, tablet, or computer, please download the following (both are free):
- MDCalc Medical Calculator
- CDC PneumoRecs

A little history

- The Spanish Flu: the 1918 Flu Pandemic
- It's not in Kansas, anymore: American mobilization
- Wilson’s press declaration: censoring the flu’s spread
- A bad time to be young and healthy: reverse epidemiology
- The race of a lifetime: a bacterial vaccine
- End of the day: disease non-battle injury
The 315th Regiment, “Philadelphia’s Own”

- Private Tadeusz (Ted) Kowalski
- 20 years of age
- From Pottsville, PA
- Miner for the Reading Anthracite Company
- Working since 12
- WWI: Volunteered to serve
- Joined 315th Regiment at Camp Meade
- Healthy, except chronic cough
- Occasional smoker

The 315th Regiment, “Philadelphia’s Own”

- July 1918, embark for France at Hoboken
- Joins Western Front
- Serves through Meuse-Argonne offensive
- Cramped quarters, suboptimal sanitation
- Fevers, chills, aches
- Improves then worsens
- Medic notes fevers, chills, shakes, sweating, racking cough productive of sputum
Audience Engagement System (AES) Question 1

You see Private Kowalski’s great, great grandson, DC2 Teddy Kowalski, Navy Reservist, in clinic. He’s 20 years of age, generally healthy, and presents with symptoms of community acquired pneumonia. He’s had no recent antibiotics. What would be the ISDA/ATS recommended empiric therapy?

A. Doxycycline
B. Respiratory fluoroquinolone
C. Antipseudomonal β-lactam
D. β-lactam in combination with a macrolide
Definitions and statistics

- Acute lower respiratory tract infection
- Fever, chills, cough, tachypnea, abnormal breath sounds
- Guidelines require abnormal radiograph
- 920K global deaths among children annually
- Eighth leading cause of death in the US (along with influenza)
- Fourth leading cause of death globally (COPD is third)
- Among the working, increases healthcare costs by up to $31K to $113K per year

Community-acquired pneumonia (CAP) guidelines

- 2007 IDSA/ATS Consensus CAP Guidelines most current
- Following guidelines lowers mortality
- What has happened since then?
 - Increasing pneumococcal vaccine coverage
 - Increasing epidemiologic data
 - Increasing numbers of immunocompromised patients
 - Increasing age of population
 - Trials of imaging modalities, steroids, and other treatments
Thoughts

• CT scan discordant with clinicians read of patient and plain film 40% of the time; almost one third dx as CAP: no infiltrate on CT
• Rhinovirus and influenza are top two detected causes of CAP; streptococcus pneumonia is third
• BUT, for those hospitalized, time to antibiotics is still important
• Increasing evidence for use of lung ultrasound for diagnosis
• Increasing evidence on use of steroids for treatment

Ultrasound

Evolving evidence
• Emergency Department (adults): 92% sensitive, 93% specific (17 studies, n = 5108)
• Children: 96% sensitive, 95% specific (12 studies, n = 1510); CXR 87% sens, 98% spec
• French study, n = 23 with CT proven pneumonia, 23 with positive US, 12 with positive CXR

If interested in learning more about lung US: https://litfl.com/lung-ultrasound-pneumonia/
Hospitalize?

Free download: “Calculate by QxMD,” or “MDCalc Medical Calculator”

CURB-65
- Confusion
- Urea nitrogen >19mg/dl (7mmol/L)
- Respiratory rate ≥ 30
- BP systolic < 90 or diastolic ≤ 60mmHg
- Age ≥ 65

PSI
- Age
- Female
- Nursing home
- Liver
- Renal
- Cerebrovasc
- CHF
- AMS
- RR > 29
- SBP < 90
- T <35 or ≥40
- Pulse > 124
- pH < 7.35
- BUN >29
- Na <130
- Gluc > 249
- Hct < 30
- PaO2 < 60
- Pleural effusion

AES Question 2

Teddy returns, not improving. He admits that he lost his pills while on maneuvers and only took one day’s worth. That was five days ago. He doesn’t seem altogether right. Your assessment:

Age: 20
PMH: No known disease
Alert but confused
Respiratory rate: 32

Heart rate: 102, BP: 104/56
Temperature: 104.2
Lung exam: crackles, right posterior dullness, decreased breath sounds over base (suspect effusion)

What is the CURB-65 or PSI recommended disposition?

A. Restart outpatient therapy
B. Hold him for observation (inpatient, non-ICU care)
C. Send him to the field hospital for more intense care (inpatient, ICU care)
Antibiotics

- **Outpatient**
 - No comorbidities
 - Macrolide OR Doxycycline
 - Comorbidities
 - FQ OR β-lactam + macrolide

- **Inpatient**
 - FQ OR β-lactam + macrolide
 - ICU
 - β-lactam AND Azithromycin OR FQ
 - Non ICU
 - FQ OR β-lactam + macrolide
 - CA-MRSA
 - Add vancomycin or linezolid
 - Pseudomonas
 - Antipneumococcal/antipseudomonal β-lactam + FQ OR AG/azithromycin OR AG/FQ

Steroids

- Corticosteroids ↓ mortality in adults with severe pneumonia
 - RR 0.58, 95% CI 0.4 to 0.84
 - NNT to prevent one death 18, 95% CI 12 to 49
- Corticosteroids ↓ early clinical failure rates (combined death, radiographic progression, clinical instability) in adults with severe and non-severe pneumonia
- Corticosteroids reduce early clinical failures and time to cure in children
- Dosing variable
 - Average 40-50mg prednisone equivalents
 - Dosed one to ten days (most frequently seven days)
- Hyperglycemia more common in adults with corticosteroids, no significant difference in secondary infection
- Studies excluded patients with HIV
AES Question 3

You visit Teddy at the hospital; he’s doing better. Overhead, a rapid response is called. It is Teddy’s aunt, Elsinore, a retired Air Force air traffic controller five days out from a coronary artery bypass. She is 67 and has multiple comorbidities. She is found tachypneic and febrile and has diffuse crackles. Imaging reveals consolidation. She is intubated, and the rapid response team leaves to answer another call. The ICU team looks expectantly at you.

What is the recommended antibiotic treatment?

A. Single agent broad spectrum coverage
B. Single agent broad spectrum coverage + MRSA coverage
C. Two agent broad spectrum coverage + MRSA coverage

Hospital acquired pneumonia (HAP)
Ventilator acquired pneumonia (VAP)

Ventilator Associated Pneumonia
Occurs ≥ 48 hours after endotracheal intubation

Hospital Acquired Pneumonia
Occurs ≥ 48 hours after admission
Not incubating at time of admission

2016 IDSA/ATS Clinical Practice Guidelines

• In choosing therapeutic agents
 – First preference: use results of non-invasive sampling
 – Second preference: use results of local antibiograms
 – Third preference: use empiric regimens
• Seven days is sufficient

Treatment of HAP

- Not at increased risk for mortality
 - Not at increased risk for MRSA
 - Piperacillin-tazobactam
 - Cefepime
 - Levofloxacin
 - Imipenem
 - Meropenem
 - At increased risk for MRSA
 - Piperacillin-tazobactam
 - Cefepime or ceftazidime
 - Levofloxacin or ciprofloxacin
 - Imipenem
 - Meropenem
 - Vancomycin or linezolid
 - AND
Treatment of HAP

High risk for mortality

Choose two agents, only one of which can be a β-lactam

- Piperacillin-tazobactam
- Cefepime or ceftazidime
- Levofloxacin or ciprofloxacin
- Imipenem
- Meropenem
- Amikacin or gentamicin or tobramycin
- Vancomycin or linezolid

OR

OR

OR

OR

OR

AND

Treatment of VAP

Column A
- Vancomycin
- Linezolid

Column B
- Piperacillin-tazobactam
- Cefepime or ceftazidime
- Imipenem or Meropenem
- Atreonam

Column C
- Ciprofloxacin or Levofoxacin
- Amikacin or Gentamicin or Tobramycin
- Colistin or Polymyxin B
Treatment of VAP

Column A

Vancomycin

Linezolid

Cover for MRSA if one of the following are present:

- Patient has risk factors for antimicrobial resistance:
 - Prior abx use within 90 days
 - Septic shock
 - ARDS
 - Hospitalized ≥ 5 days prior to VAP
 - Need for acute renal replacement therapy prior to VAP
- Patient treated in unit where > 10-20% of S. aureus isolates are MRSA
- Patients in units with unknown MRSA prevalence

If RF for MRSA absent, regimen with piperacillin-tazobactam, cefepime, levofloxacin, imipenem, or meropenem sufficient for presumptive MSSA

Treatment of VAP

Column B

Piperacillin-tazobactam

Cefepime or Ceftazidime

Imipenem or Meropenem

Aztreonam

Double cover for P. aeruginosa and gram-negative bacilli if the following present:

- Patient has risk factors for antimicrobial resistance:
 - Prior abx use within 90 days
 - Septic shock
 - ARDS
 - Hospitalized ≥ 5 days prior to VAP
 - Need for acute renal replacement therapy prior to VAP
- Patient treated in unit where > 10% of gram-negative isolates resistant to monotherapy
- Patients in units with unknown antimicrobial susceptibility rates
AES Question 4

Elsinore sees you in follow up, along with her husband Larry, a retired Chief Master Sergeant. He is new to your practice, is 65 years old, and is open to vaccinations. You review his records and note he has not had any "pneumonia" vaccines. You schedule him for:

A. PCV13 now and PPSV23 one year later
B. PPSV23 now and PCV 13 one year later
C. PCV 13 only
D. PPSV23 only

Pneumonia then

- Discovered by Army Major George Sternberg in 1880
- Major threat to military operations during World War I
- Pneumococcal polysaccharide vaccines field tested by US Army
- 792,000 soldiers hospitalized for influenza or pneumonia, 25,000 deaths
- One in 67 soldiers died of influenza or pneumonia
Pneumonia now

• Streptococcus pneumoniae
 – Over 90 serotypes identified as of 2011
 – Polysaccharide capsule important in pathogenicity
• In children 6 or less
 • 7 serotypes common
 • 80% of invasive disease

PPSV23

• Pneumococcal Polysaccharide Vaccine
 – 1983 – 23 valent PPSV23 released
 – Replaced PPSV14 (not made anymore)

• Pneumovax 23 (Merck)
• Routinely given in Seniors (65 or greater)
PCV13

- Pneumococcal *Conjugate* Vaccine
- 2000 – 7 serotypes *conjugated* to CRM197 (nontoxic variant of diptheria)
- 2010 – 13 serotypes (7+ 6 new ones) *conjugated* to CRM197
- Typical use in *Children*

PCV13 vs. PPSV23

- *Conjugate* vs. *Saccharide*
- *Children* vs. *Senior*
- 13-valent vs. 23-valent

Chronic Diseases: Chronic heart disease, lung disease, Diabetes, smoking, liver disease, alcoholism, CSF leaks and cochlear implants
CAPiTA: is PCV13 effective for adults?

- Community acquired pneumonia Immunization Trial in Adults (CAPiTA)
- 84,946 adults 65 years or older (vaccine naïve)
- Randomized, double-blind trial
 – PCV13 vs. placebo
 – Followed for 4 years

<table>
<thead>
<tr>
<th></th>
<th>PCV13 (42,240)</th>
<th>Placebo (42,256)</th>
<th>% Vaccine Efficacy</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive CAP</td>
<td>49</td>
<td>90</td>
<td>45.6%</td>
<td><0.001</td>
</tr>
<tr>
<td>Nonbacteremic and noninvasive CAP</td>
<td>33</td>
<td>60</td>
<td>45%</td>
<td>0.007</td>
</tr>
<tr>
<td>invasive pneumococcal dz</td>
<td>7</td>
<td>28</td>
<td>75%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

There are apps for that!

PneumoRecs VaxAdvisor
Centers for Disease Control and Prevention

PneumoVaccines
Joshua Steinberg, MD

AES Question 5

Larry’s and Elsinore’s friend, Jamal asks for you to be his doctor (your reputation is sky-rocketing based on your awesome pneumonia care). Jamal is 65 years of age, has type 2 diabetes, and would like to get his vaccinations done. After discussion, he would like any vaccines you recommend. You review his records and he has had one “pneumonia” vaccine (PPSV23) in 2017. It is September. You schedule him for:

A. PCV13 and influenza only
B. PPSV23 and influenza now and PCV 13 one year later
C. PCV 13 and influenza now and PPSV23 one year later
D. PCV 13 and influenza now and PPSV23 three years later
Influenza vaccine

Benefit in preventing CAP
- 2018 Song, PLoS One: Fewer cases of pneumonia when vaccine effective against circulating strains
- 2018 Heo, Hum Vaccin Immunother: Six meta-analyses report 25 to 53% effectiveness in preventing hospitalization due to pneumonia or influenza in the elderly

Unsure benefit in those who later develop CAP
- 2015 Li, J Hosp Med: small reduction in length of stay for CAP, no effect on inpatient survival
- 2011 Tessmer, Eur Respir J: less severe disease, improved survival at six months
- 2011 Manzur J Am Geriatr Soc: no difference in severity of CAP, length of stay, mortality in cohort ≥ 65 years of age
- 2007 Spaude, Arch Intern Med: improved inpatient survival

Manufacturing influenza vaccine

- Annual composition of vaccine varies based on circulating strains
- Once strains selected, six months to market
- WHO recommendations for 2019-2020
 - A/Brisbane/02/2018 (H1N1)pdm09-like virus
 - A/Kansas/14/2017 (H3N2)-like virus
 - B/Colorado/06/2017-like virus (B/Victoria/2/87 lineage)
 - B/Phuket/3073/2013-like virus (B/Yamagata/16/88 lineage)- quadrivalent only
- Egg-based, cell-based, and recombinant manufacturing techniques
Administering influenza vaccine

• 2019 ACIP recommendations
 – all persons 6 months and older without contraindications should receive influenza vaccine by end of October with an age appropriate vaccine
 – prioritize high risk groups
 – two doses for children 6 months to 8 years of age, 4 weeks between doses

The end of the story:
• 500 million infected globally
• 50 million deaths globally
• 675K deaths US
• Life expectancy fell 12 years
• Toll worsened by censorship
• Worse spread as a consequence of war

Today
• Routine influenza vaccination
• Antiviral medications
• Stockpiles of pandemic strain vaccines

https://commons.wikimedia.org/wiki/File:1919_‐_World_War_I_Victory_Parade_‐_Marching_Band_and_Veterans_Marching:_2_‐_Allentown_PA.jpg
Practice Recommendations

- Pneumonia is diagnosed clinically and radiographically
- Local microorganism epidemiology and susceptibility patterns should guide treatment
- Empiric regimens should be based on risk factors and severity of disease
- HAP and VAP are diagnosed if pneumonia develops 48 hours after hospitalization or ventilation, respectively
- Influenza and pneumococcal vaccination save lives
- If ≥ 65 y.o., immunocompetent, and vaccine naïve, give PCV13 first and then PSV23 in one year

Questions
Contact Information

Aaron Saguil
aaron.saguil@usuhs.edu

Robert Oh